Skip to main content
Log in

Performance Analysis of Metamaterial Patch Antenna Characteristics for Advanced High-Speed Wireless System

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Due to their low energetic photons and lack of ionization damage, terahertz (THz) waves are recognized as suitable for various wireless innovative applications with high-speed data rates. This paper proposes the design and analysis of a microstrip patch antenna based on a dual-ply hexagonal split ring resonator (HSRR). The suggested antenna resonates at 1.9 THz and is suitable for recent advancements in wireless communication. Furthermore, the HSRR structure has been investigated for various spacing Rs values between the rings, and the optimized HSRR structure performance is compared with conventional antennae. The computer simulation technology studio suite was used to model the planned HSRR and to study the antenna properties. The optimized HSRR structure produces − 47.09 dB return loss with a voltage standing wave ratio of 1.008. The structure exhibits a gain of 8.649 dB and a directivity of 8.696 dB at 1.992 THz. THz light's capability to react differently with innocuous and threatening materials as a function of the THz band provides a highly flexible base for spectroscopic THz scanning and security checks. This suggested HSRR antenna is appropriate for all THz applications with high-speed data rates, such as wireless satellite communication, the biomedical detection of malignant tissue, THz imaging, and spectrometers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data is available within the manuscript.

References

  1. X. Fu, Y. Liu, Q. Chen, Y. Fu, and T.J. Cui, Applications of terahertz spectroscopy in the detection and recognition of substances. Front. Phys. 10, 869537 (2022).

    Article  Google Scholar 

  2. A.Y. Pawar, D.D. Sonawane, K.B. Erande, and D.V. Derle, Terahertz technology and its applications. Drug Invent. Today 5(2), 157 (2013).

    Article  Google Scholar 

  3. B.E. Caroline, K. Sagadevan, S.K. Danasegaran, and K. Sandeep, Characterization of a pentagonal CSRR bandpass filter for terahertz applications. J. Electron. Mater. 14, 5405 (2022).

    Article  Google Scholar 

  4. X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol 34, 810 (2016).

    Article  CAS  Google Scholar 

  5. Y. He, B.S.Y. Ung, E.P.J. Parrott, A.T. Ahuja, and E. Pickwell-MacPherson, Freezethaw hysteresis effects in terahertz imaging of biomedical tissues. Biomed. Opt. Express 7, 4711 (2016).

    Article  Google Scholar 

  6. A.A. Gavdush, N.V. Chernomyrdin, G.A. Komandin, I.N. Dolganova, P.V. Nikitin, G.R. Musina et al., Terahertz dielectric spectroscopy of human brain gliomas and intact tissues ex vivo: double-debye and double-overdamped oscillator models of dielectric response. Biomed. Opt. Express 12, 69 (2021).

    Article  CAS  Google Scholar 

  7. B. Qin, Z. Li, Z. Luo, Y. Li, and H. Zhang, Terahertz time-domain spectroscopy combined with PCA-CFSFDP applied for pesticide detection. Opt. Quant. Electron. 49, 244 (2017).

    Article  Google Scholar 

  8. Q. Ma, Y. Teng, C. Li, and L. Jiang, Simultaneous quantitative determination of low-concentration ternary pesticide mixtures in wheat flour based on terahertz spectroscopy and BPNN. Food Chem 377, 132030 (2022).

    Article  CAS  Google Scholar 

  9. E.C. Britto, S.K. Danasegaran, S.C. Xavier, and J. Jeeyaseelan, Soil nutrient detection based on photonic crystal hexagonal resonator for smart farming. Braz. J. Phys. 51, 1274 (2021).

    Article  Google Scholar 

  10. G. Tzydynzhapov, P. Gusikhin, V. Muravev, A. Dremin, Y. Nefyodov, and I. Kukushkin, New real-time sub-terahertz security body scanner. J. Infrared Millim. Terahertz Waves 41, 632 (2020).

    Article  Google Scholar 

  11. S. Poonguzhali, A. Sivasangari, P. Ajitha, S. Lalithakumari, A. Sridevi, and S.K. Danasegaran, Design and performance analysis of smart photonic sensors for industrial applications. Curr. Appl. Phys. 39, 183 (2022).

    Article  Google Scholar 

  12. A. Sivasangari, P. Ajitha, S. Poonguzhali, S.K. Danasegaran, and R. Immanuel, High performance photonic nanostructured sensors for smart industries: design and analysis. Brazil. J. Phys. 52(5), 1 (2022).

    Article  Google Scholar 

  13. S.K. Danasegaran, E.C. Britto, and S. Poonguzhali, Smart gas sensor based on photonic crystal for sensing perilous gases: industrial and mining applications. Energy Sour. Part A Recovery Util. Environ. Effects 44(3), 7564 (2022).

    CAS  Google Scholar 

  14. Y. Cheng, H. Liu, B.Q. Sheng, and L. Zhu, A compact 4-element MIMO antenna for terminal devices. Microwave Opt. Technol. Lett. 62(9), 2930 (2020).

    Article  Google Scholar 

  15. S.R. Best, Electrically small resonant planar antennas: optimizing the quality factor and bandwidth. IEEE Antennas Propag. Mag. 57(3), 38 (2015).

    Article  Google Scholar 

  16. D.S. Kumar, B.E. Caroline, S. Thilagavathi, Investigation of equilateral triangular microstrip patch antenna using photonic crystal, in 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), (2020), pp. 1–6

  17. M. Wang, H. Liu, P. Zhang, X. Zhang, H. Yong, G. Zhou, and L. Li, Broadband implantable antenna for wireless power transfer in cardiac pacemaker applications. IEEE J. Electromagn. RF Microwaves Med. Biol. 5, 2 (2020).

    Article  Google Scholar 

  18. D.R. Smith, J.B. Pendry, and M.C. Wiltshire, Metamaterials and negative refractive index. Science 305(5685), 788 (2004).

    Article  CAS  Google Scholar 

  19. M. Zada, I.A. Shah, and H. Yoo, Metamaterial-loaded compact high gain dual-band circularly polarized implantable antenna system for multiple biomedical applications. IEEE Trans. Antennas Propag. 68(2), 1140 (2019).

    Article  Google Scholar 

  20. M. Koutsoupidou, I.S. Karanasiou, and N. Uzunoglu, Substrate constructed by an array of split ring resonators for a THz planar antenna. J. Comput. Electron. 13, 593 (2014).

    Article  Google Scholar 

  21. S.S. Al-Bawri, M.T. Islam, M.S. Islam, M.J. Singh, and H. Alsaif, Massive metamaterial system-loaded MIMO antenna array for 5G base stations. Sci. Rep. 12, 14311 (2022).

    Article  CAS  Google Scholar 

  22. S.K. Patel, J. Surve, V. Katkar, and J. Parmar, Machine learning assisted metamaterial-based reconfigurable antenna for low-cost portable electronic devices. Sci. Rep. 12, 12354 (2022).

    Article  CAS  Google Scholar 

  23. M. Bejide, Y. Li, N. Stavrias, B. Redlich, and T. Tanaka, Vu Dinh Lam, Nguyen Thanh Tung, and Ewald Janssens, Transient transmission of THz metamaterial antennas by impact ionization in a silicon substrate. Opt. Express 29, 170 (2021).

    Article  CAS  Google Scholar 

  24. T. Tanweer Ali, K.D. Prasad, and R.C. Biradar, A miniaturized slotted multiband antenna for wireless applications. J. Comput. Electron. 17, 1056 (2018).

    Article  Google Scholar 

  25. K.B. Alici and E. Ozbay, Electrically small split ring resonator antennas. J. Appl. Phys. 101(8), 083104 (2007).

    Article  Google Scholar 

  26. A. Alizadeh, M. Nazeri, and A. Sajedi Bidgoli, Enhancement of the frequency peak of terahertz photoconductive antennas using metamaterial (MTM) superstrate structures. J. Comput. Electron. 19, 451 (2020).

    Article  CAS  Google Scholar 

  27. M. Nouri, S. Abazari Aghdam, A. Jafarieh, N.K. Mallat, M.H. Jamaluddin, and M. Dor-Emami, An optimized small compact rectangular antenna with meta-material based on fast multi-objective optimization for 5G mobile communication. J. Comput. Electron. 20, 1532 (2021).

    Article  Google Scholar 

  28. P. Kaur, S. Bansal, and N. Kumar, SRR metamaterial-based broadband patch antenna for wireless communications. J. Eng. Appl. Sci. 69, 47 (2022).

    Article  Google Scholar 

  29. I. Aggarwal, S. Pandey, M.R. Tripathy, and A. Mittal, A compact high gain metamaterial-based antenna for terahertz applications. J. Electron. Mater. 51, 4589 (2022).

    Article  CAS  Google Scholar 

  30. D. Chaturvedi and S. Raghavan, SRR-loaded metamaterial-inspired electrically-small monopole antenna. Progress Electromagn. Res. C 81, 11 (2018).

    Article  Google Scholar 

  31. C. Lee, G. Chattopadhyay, E. Decrossas, A. Peralta, I. Mehdi, C.A. Leal Sevillano, M.A. Del Pino, N. Llombart, Terahertz antenna arrays with silicon micromachined-based microlens antenna and corrugated horns, in Proceedings of the IEEE - International Workshop on Antenna Technology (iWAT), Seoul, Korea, (2015), pp. 70–73

  32. I. Ahmad, S. Ullah, S. Ullah, U. Habib, S. Ahmad, A. Ghaffar, M. Alibakhshikenari, S. Khan, and E. Limiti, Design and analysis of a photonic crystal based planar antenna for THz applications. Electronics 10(16), 1 (2021).

    Article  Google Scholar 

  33. K. Ritesh Kumar and P. Karuppanan, Investigation and design of microstrip patch antenna employed on PCs substrates in THz regime. Aust. J. Electr. Electron. Eng. 18(2), 118 (2021).

    Article  Google Scholar 

  34. A. Vahdati and F. Parandin, Antenna patch design using a photonic crystal substrate at a frequency of 1.6 THz. Wirel. Pers. Commun. 109(4), 2213 (2019).

    Article  Google Scholar 

  35. A. Hocini, M.N. Temmar, D. Khedrouchem, and M. Zamani, Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals. Photonics Nanostruct. Fundam. Appl. 36, 100723 (2019).

    Article  Google Scholar 

  36. U. Shahid, R. Cunjun, U. Tanveer, and X. Zhang, High performance THz patch antenna using photonic band gap and defected ground structure. J. Electromagn. Waves Appl. 33(15), 1943 (2019).

    Article  Google Scholar 

  37. K. Ritesh Kumar, P. Karuppanan, and L.D. Malviya, Design and analysis of novel MPA on photonic crystal in THz. Phys. B Condens. Matter 545, 107 (2018).

    Article  Google Scholar 

  38. E.C. Britto, S.K. Danasegaran, S.C. Xavier, A. Sridevi, and A.R.S. Batcha, Study of Various Beamformers and Smart Antenna Adaptive Algorithms for Mobile Communication, Smart Antennas. EAI/Springer Innovations in Communication and Computing. ed. P.K. Malik, J. Lu, B.T.P. Madhav, G. Kalkhambkar, and S. Amit (Cham: Springer, 2022).

    Google Scholar 

  39. D. Sathish Kumar, B.E. Caroline, S. Thilagavathi, Investigation of equilateral triangular microstrip patch antenna using photonic crystal. in 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), (2020), pp. 1–6

  40. E.C. Britto, S.K. Danasegaran, S.C. Xavier, and S. Lalithakumari, Investigation of electromagnetic wave propagation in a defected photonic crystal square lattice structure. J. Electron. Mater. 52, 1177 (2022).

    Article  Google Scholar 

  41. C.M. Krishna, S. Das, A. Nella, S. Lakrit, and B. Madhav, A micro-sized rhombus-shaped THz antenna for high-speed short-range wireless communication applications. Plasmonics 16, 2167 (2021).

    Article  CAS  Google Scholar 

  42. F.A. Almalki and M.C. Angelides, An enhanced design of a 5G MIMO antenna for fixed wireless aerial access. Cluster Comput. 25, 1591 (2022).

    Article  Google Scholar 

  43. M. Nahas, Design of a high-gain dual-band LI-slotted microstrip patch antenna for 5G mobile communication systems. J. Radiat. Res. Appl. Sci. 15, 4 (2022).

    Google Scholar 

  44. M. Kanagasabai, S. Shanmuganathan, M. Alsath, N. Gulam, and S.K. Palaniswamy, A novel low-profile 5G MIMO antenna for vehicular communication. Int. J. Antennas Propag. (2022). https://doi.org/10.1155/2022/9431221.

    Article  Google Scholar 

  45. C. Mustacchio, L. Boccia, E. Arnieri, G. Amendola, Gain enhancement technique for on-chip monopole antenna. in Proceedings of the 50th European Microwave Conference (EuMC), (2021), pp. 650–653

  46. K.N. Olan-Nuñez and R.S. Murphy-Arteaga, A novel metamaterial-based antenna for on-chip applications for the 72.5–81 GHz frequency range. Sci. Rep. 12(1), 1699 (2022).

    Article  Google Scholar 

  47. S. Ahmad, S. Ullah, U. Ullah, S. Habib, A. Ahmad, M. Ghafar, S.K. Alibakhshikenari, and E. Limiti, Design and analysis of a photonic crystal based planar antenna for THz applications. Electronics 10, 1941 (2021).

    Article  CAS  Google Scholar 

  48. K. Sam Shanmugam, Digital and Analog Communication Systems (New York: Wiley, 2008).

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Poonguzhali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The authors declared that the manuscript ethics is approved as per the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivasangari, A., Deepa, D., Ajitha, P. et al. Performance Analysis of Metamaterial Patch Antenna Characteristics for Advanced High-Speed Wireless System. J. Electron. Mater. 52, 4785–4792 (2023). https://doi.org/10.1007/s11664-023-10420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10420-y

Keywords

Navigation