Skip to main content

Metamaterial-FSS for THz Applications

  • Living reference work entry
  • First Online:
Handbook of Metamaterial-Derived Frequency Selective Surfaces

Part of the book series: Metamaterials Science and Technology ((METSCTE,volume 3))

  • 78 Accesses

Abstract

This chapter provides an overview of the metamaterial-Frequency Selective Surfaces (FSSs) for terahertz (THz) applications. In order to support various next generation wireless applications, the demand of the high data rate capacity systems keeps on increasing day by day. Lower frequency ranges such as microwave frequency bands offer smaller bandwidth, and these bands are already congested because of supporting the several wireless applications. To achieve a higher data rate, larger bandwidth is required, which can be obtained at high frequency, i.e., utilizing THz band. In this chapter, first, the electromagnetic spectrum is discussed with the focus of THz bands and its applications. Frequency selective surfaces (FSSs) are currently an active area of research due to their capability to manipulate the EM waves and unprecedented features. FSSs act as spatial filters, i.e., some particular band of frequency is transmitted, and others are reflected and found a wide applications in communications, radar systems, and sensing. However, traditional FSSs have the unit elements sizes which are in the order of half-wavelength at frequency of operation, which limit its applications, and hence they need to be miniaturized for use in various applications with better performances. Electromagnetic metamaterials are the man-made structures exhibiting the unique electromagnetic characteristics, which do not occur naturally. Recently, metamaterial has shown its capability toward the miniaturization of the microwave structures as well the antennas. In this regard, metamaterial concept plays a vital role in the miniaturization of the FSS by using subwavelength unit elements. Here, a brief overview of the metamaterial inspired FSS is discussed in detail. In the last, simulation setup and design flow for designing FSS using EM simulator such as HFSS and CST are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akyildiz IF, Jornet JM, Hana C (2014) Terahertz band: next frontier for wireless communications. Phys Commun 12:16–32

    Article  Google Scholar 

  • Anderson T, Alexe I, Raynolds J (2003) Plasma frequency selective surfaces. In: Proceedings under IEEE international conference on plasma science, p 237

    Google Scholar 

  • Bahl I (2003) Lumped elements for RF and microwave circuits. Artech House Inc., Norwood

    Google Scholar 

  • Balanis CA (2012) Advanced engineering electromagnetics, 2nd edn. Wiley

    Google Scholar 

  • Bao XL, Ruvio G, Ammann MJ, John M (2006) A novel GPS patch antenna on a fractal Hi-impedance surface substrate. IEEE Antennas Wirel Propag Lett 5:323–326

    Article  Google Scholar 

  • Bayatpur F (2009) Metamaterial-inspired frequency-selective surfaces. PhD dissertation, University of Michigan, Ann Arbor

    Google Scholar 

  • Bayatpur F, Sarabandi K (2008) Single-layer, high-order, miniaturized-element frequency selective surfaces. IEEE Trans Microw Theory Tech 56(4):774–781

    Article  Google Scholar 

  • Bolivar PH, Brucherseifer M, Rivas JG, Gonzalo R, Ederra I, Reynolds AL, Holker M, Maagt PD (2003) Measurement of the dielectric constant and loss tangent of high dielectric – constant materials at terahertz frequencies. IEEE Trans Microw Theory Tech 51(4):1062–1066

    Article  Google Scholar 

  • Brito DB (2010) Metamaterial inspired improved antennas and circuits. PhD dissertation, Universidade Federal do Rio Grande do Norte, combined with Telecom ParisTech, Natal

    Google Scholar 

  • Broas RFJ, Sievenpiper DF, Yablonovitch E (2001) A high-impedance ground plane applied to a cellphone handset geometry. IEEE Trans Microw Theory Tech 47(7):1262–1265

    Article  Google Scholar 

  • Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. John Wiley & Sons, Inc

    Book  Google Scholar 

  • Collin R (1991) Field theory of guided waves, 2nd edn. IEEE press, New York

    MATH  Google Scholar 

  • Cong L, Tan S, Yahiaoui R, Yan F, Zhang W, Singh R (2015) Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl Phys Lett 106(3).:031107-1-031107-5

    Google Scholar 

  • Costa F, Kazemzadeh A, Genovesi A, Monorchio A (2016) Electromagnetic absorbers based on frequency selective surfaces. Forum Electromagn Res Meth Appl Tech (FERMAT) 37(1):1–23

    Google Scholar 

  • Ebrahimi A (2016) Metamaterial-inspired structures for microwave and terahertz applications. PhD dissertation, The University of Adelaide, Australia

    Google Scholar 

  • Edalati A, Sarabandi K (2014) Reflectarray antenna based on grounded loop-wire miniaturized-element frequency selective surfaces. IET Microw Antennas Propag 8(12):973–979

    Article  Google Scholar 

  • Fallahi A (2010) Optical design of planar metamaterials. PhD dissertation, Swiss federal Institute of Technology, Zurich

    Google Scholar 

  • Federici J, Moeller L (2010) Review of terahertz and sub-terahertz wireless communications. J Appl Phys 107:111101

    Article  Google Scholar 

  • Federici JF, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D (2005) THz imaging and sensing for security applications – explosives, weapons and drugs. Semicond Sci Technol 20:S266–S280

    Article  Google Scholar 

  • Ghodgaonka DK, Varadan VV, Varadan VJ (1989) A free-space method for measurement of dielectric constants loss tangents at microwave frequencies. IEEE Trans Instrum Meas IM-37(3):789–793

    Article  Google Scholar 

  • Hamdy SM, Parker PA (1982) Influence of lattice geometry on transmission of electromagnetic waves through arrays of crossed dipoles. IEE Proc Part H: Microw Opt Antennas 129(1):7–10

    Google Scholar 

  • Huang KC, Wang Z (2011) Terahertz terabit wireless communication. IEEE Microw Mag 12(4):108–116

    Article  Google Scholar 

  • Huang J, Wu TK, Lee SW (1994) Tri-band FSS with circular ring elements. IEEE Trans Antennas Propag AP-42(2):166–175

    Article  Google Scholar 

  • Hussein MN (2018) Submillimeter, millimeter and microwave frequency selective surfaces, design and development. PhD dissertation, University of Liverpool, England

    Google Scholar 

  • Jackson DR, Alexopoulos NG (1985) Gain enhancement methods for printed circuit antennas. IEEE Trans Antennas Propag 33(9):976–987

    Article  Google Scholar 

  • Kesawan A (2019) Millimeter-wave frequency selective surfaces for reconfigurable antenna applications. Ph.D. Disseration, Universite du Quebec Institut national de la recherche scientifique Energie Materiaux Telecommunications

    Google Scholar 

  • Kurner T, Priebe S (2014) Towards THz communications-status in research, standardization and regulation. J Infrared Milli Terahz Waves 35:53–62

    Article  Google Scholar 

  • Lagley RJ, Drinkwater AJ (1982) Improved empirical model for the Jerusalem cross. IEE Proc, Part H: Microw Opt Antennas 129(1):1–6

    Google Scholar 

  • Lam WW, Chen HZ, Stolt KS, Jou CF, Luhmann NC Jr, Rutledge DB (1988) Millimeter-wave diode-grid phase shifters. IEEE Trans Microw Theory Tech MTT-36(5):902–907

    Article  Google Scholar 

  • Langley RJ, Parker EA (1982) Equivalent circuit model for arrays of square loops. Electron Lett 18(7):294–296

    Article  Google Scholar 

  • Langley RJ, Parker EA (1983) Double-square frequency-selective surfaces and their equivalent circuit. Electron Lett 19(17):675

    Article  Google Scholar 

  • Li GY, Chan YC, Mok TS, Vardaxoglou JC (1995) Analysis of frequency selective surfaces on biased ferrite substrate. IEEE AP-S Dig 3:1636–1639

    Google Scholar 

  • Lima AC, Parker EA, Langley RJ (1994) Tunable frequency selective surface using liquid substrates. IEE Electron Lett 30(4):281–282

    Article  Google Scholar 

  • Liu Y, Christodoulou CG, Buris NE (1997) Fullwave analysis method for frequency selective surfaces on ferrite substrates. J Electromagn Waves Applicat 11(5):593–607

    Article  MATH  Google Scholar 

  • Liu Y, Christodoulou CG, Wahid PF, Buris NE (1995) Analysis of frequency selective surfaces with ferrite substrates. IEEE AP-S Dig 3:18–23

    Google Scholar 

  • Lv X, Withayachumnankul W, Fumeaux C (2019) Single-FSS-layer absorber with improved bandwidth-thickness tradeoff adopting impedance-matching superstrate. IEEE Antennas Wirel Propag Lett 18(5):916–920

    Article  Google Scholar 

  • Ma Y, Zhang H-W, Li Y, Wang Y, Lai W (2013) Terahertz sensing application by using fractal geometries of split-ring resonators. Prog Electromagn Res 138:407–419

    Article  Google Scholar 

  • Mahmoodi M (2020) Frequency selective surface-based sensing: Theory and applications. PhD dissertation, Missouri University of Science and Technology, USA

    Google Scholar 

  • Mittra R, Chan C, Cwik T (1988) Techniques for analyzing frequency selective surfaces – a review. IEEE Proc 76(23):1593–1615

    Article  Google Scholar 

  • Munk BA (1974) Periodic surface for large scan angle. US Patent 3:789,404

    Google Scholar 

  • Munk BA (2000) Frequency-selective surfaces: theory and design. Wiley, New York

    Book  Google Scholar 

  • Nagatsuma T, Horiguchi S, Minamikata Y, Yoshimizu Y, Hisatake S, Kuwano S, Yoshimoto N, Terada J, Takahashi H (2013) Terahertz wireless communications based on photonics technologies. Opt Express 21(20):23736–23747

    Article  Google Scholar 

  • Nagel M, Bolivar P, Haring BM, Kurz H (2002) Integrated THz technology for label-free genetic diagnostics. Appl Phys Lett 80(1)

    Google Scholar 

  • Ostmann TK, Nagatsuma T (2011) A review on terahertz communications research. J Infrared Milli Terahz Waves 32:143–171

    Article  Google Scholar 

  • Parker E, Hamdy S, Langley R (1981) Arrays of concentric rings as frequency selective surfaces. Electron Lett 17(23):880

    Article  Google Scholar 

  • Parker EA, Handy SMA (1981) Rings as elements for FSS. Electron Lett 17(17):612–614

    Article  Google Scholar 

  • Pelton EL, Munk BA (1974) A streamlined metallic radome. IEEE Trans Antennas Propag AP-22(6):799–803

    Article  Google Scholar 

  • Pelton EL, Munk BA (1979) Scattering from periodic arrays of crossed dipoles. IEEE Trans Antennas Propag AP-27(3):323–330

    Article  Google Scholar 

  • Phillips TG, Keene J (1992) Submillimeter Astronomy. Proc IEEE 80(11):1662–1678

    Article  Google Scholar 

  • Pickwell E, Wallace VP (2006) Biomedical applications of terahertz technology. J Phys D Appl Phys 39:R301–R310

    Article  Google Scholar 

  • Piro G, Bia P, Boggia G, Caratelli D, Grieco LA, Mescia L (2016) Terahertz electromagnetic field propagation in human tissues: a study on communication capabilities. Nano Commun Netw 10:51–59

    Article  Google Scholar 

  • Rittenhouse D (1786) An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittemhouse. Trans Am Philos Soc 2:201–206

    Article  Google Scholar 

  • Romeu J, Rahmat-Samii Y (2000) Fractal FSS: a novel dual-band frequency selective surface. IEEE Trans Antennas Propag 48(7):10971105

    Article  Google Scholar 

  • Rotaru MD, Sykulski JK (2011) Improved sensitivity of terahertz label free bio-sensing application through trapped-mode resonances in planar resonators. IEEE Trans Magn 47(5):1026–1029

    Article  Google Scholar 

  • Sanz FJS (2011) Frequency selective surfaces for Terahertz applications. PhD dissertation, The University of Edinburgh, England

    Google Scholar 

  • Sarabandi K, Behdad N (2007) A frequency selective surface with miniaturized elements. IEEE Trans Antennas Propag 55(5):1239–1245

    Article  Google Scholar 

  • Schennum GH (1973) Frequency selective surfaces for multiple frequency antennas. Microw J 16(5):55–57

    Google Scholar 

  • Schennum GH (1996) The effect of perturbating a frequency-selective surface and its relation to the design of a dual-band surface. IEEE Trans Antennas Propag 44(3):368–374

    Article  Google Scholar 

  • Schneider SW, Munk BA (1994) The scattering properties of super dense arrays of dipoles. IEEE Trans Antennas Propag AP-42(2):463–472

    Article  Google Scholar 

  • Seeds AJ, Shams H, Fice MJ, Renaud CC (2015) Terahertz photonics for wireless communications. J Lightwave Technol 33(3):579–587

    Article  Google Scholar 

  • Sengupta K, Nagatsuma T, Mittleman DM (2018) Terahertz integrated electronic and hybrid electronic-photonic systems. Nat Electron 1:622–635

    Article  Google Scholar 

  • Siegel PH (2002) Terahertz Technolog. IEEE Trans Microwave Theory Tech 50(3):910–928

    Article  Google Scholar 

  • Siegel PH (2007) THz instruments for space. IEEE Trans Antennas Propag 55(11):2957–2965

    Article  Google Scholar 

  • Sievenpiper D, Zhang L, Broas RFJ, Alexpolous NG, Yablonvitch E (1999) High impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microw Theory Tech 47(11):2059–2074

    Article  Google Scholar 

  • Song H-J, Nagatsuma T (2011) Present and future of terahertz communications. IEEE Trans Terahertz Sci Technol 1(1): 256–263

    Google Scholar 

  • Steve M (2006) Practical MMIC design, Artech house. INC, Norwood

    Google Scholar 

  • Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1:97–105

    Article  Google Scholar 

  • Tsao CH, Mittra R (1984) Spectral-domain analysis of frequency selective surfaces comprised of periodic arrays of cross dipoles and Jerusalem crosses. IEEE Trans Antennas Propag AP-32(5):478–486

    Article  Google Scholar 

  • Vardaxoglou JC (1997) Frequency-selective surfaces: analysis and design. Research Studies Press, Ltd., Taunton

    MATH  Google Scholar 

  • Wu TK (1992) Single screen triband FSS with double-square-loop elements. Microwave Opt Tech Lett 5(2):56–59

    Article  Google Scholar 

  • Wu TK (1995) Frequency-selective surface and grid array. Wiley, New York

    Google Scholar 

  • Xiong H, Hong JS, Luo CM, Zhong LL (2013) An ultrathin and broadband metamaterial absorber using multi-layer structures. J Appl Phys 114(6):064109

    Article  Google Scholar 

  • Yang HY, Alexopoulos NG (1987) Gain enhancement methods for printed antennas through multiple superstrates. IEEE Trans Antennas Propag 5(7):860–863

    Article  Google Scholar 

  • Yeo J, Mittra R (2001) Bandwidth enhancement of multiband antennas using frequency selective surfaces for ground planes. IEEE AP-S Symp 4:366–369

    Google Scholar 

  • Zeitler JA, Taday PF, Newnham DA, Pepper M, Gordon KC, Rades T (2007) Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting – a review. J Pharm Pharmacol 59:209–223

    Article  Google Scholar 

  • Zhang K, Li D (1999) Electromagnetic theory for microwaves and optoelectronics. Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra Prasad Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jaiswal, R.K., Pandit, N., Pathak, N.P. (2022). Metamaterial-FSS for THz Applications. In: Narayan, S., Kesavan, A. (eds) Handbook of Metamaterial-Derived Frequency Selective Surfaces. Metamaterials Science and Technology, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-15-8597-5_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8597-5_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8597-5

  • Online ISBN: 978-981-15-8597-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics