Skip to main content
Log in

Influence of Sm and Fe Co-doping on Structural and Electrical Features of Yttrium Chromite Nanoparticles

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Structural and electrical properties of perovskite-type Y1-xSmxCryFe1-yO3 nanoparticles synthesized by the sol–gel technique have been investigated. The X-ray diffraction pattern suggests that a pure phase was obtained for all the samples. The co-doped YCrO3 samples are highly crystalline, with an average crystallite size that varies between 31 and 35 nm. The details of the crystal structure of Sm-Fe co-doped nanoparticles were investigated by Rietveld refinement using Fullprof software. The electrical transport properties of YCrO3 and doped YCrO3 samples were investigated in the temperature range 303 K to 523 K, which shows that due to doping, the dc resistivity of the co-doped YCrO3 samples increases. The effect of doping on dc and ac activation energies was estimated. Temperature dependence of the power factor suggests that ac conductivity below 425 ± 5 K (region I) can be explained by CBH (correlated barrier hopping) model, and above 425 ± 5 K (region II), NSPT (non-overlapping small polaron tunneling) model is suitable. Around 450 K, a broad peak observed in the dielectric constant vs. temperature curve indicates the relaxor ferroelectric behavior in the co-doped YCrO3 nanoparticles. The asymmetric nature of the electric modulus spectra was explained by the modified KWW function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The author confirms that the data supporting the findings of this study are available within the article and its supplementary material. Raw data that support the findings of this study are available from the author, upon reasonable request.

References

  1. W. Li, M. Gong, X. Liu, Characterization of doped yttrium chromites as electrodes for solid oxide fuel cell by impedance method. J. Electrochem. Soc. 161, F551 (2014)

    Article  Google Scholar 

  2. Y. Sharma, P. Misra, R.S. Katiyar, Unipolar resistive switching behavior of amorphous YCrO3 films for nonvolatile memory applications. J. Appl. Phys. 116, 0845505 (2014)

    Article  Google Scholar 

  3. P.M. Bulemo, I.D. Kim, Recent advance in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors. J. Korean Ceram. Soc. 57, 24 (2020)

    Article  Google Scholar 

  4. J. Zhang, M.A. Gondal, W. Wei, T. Zhang, Q, Xu, K. Shen, J. Alloys Comp. 530, 107 (2012)

  5. E. Markiewicz, K. Szot, B. Hilczer, A. Pietraszko, A. Phase Trans. 86, 284 (2013)

    Article  Google Scholar 

  6. J. Stein, M. Baum, S. Holbein, T. Cronert, V. Hutanu, A.C. Komarek, M. Braden et al., J. Phys: Conden. Matter 27, 446001 (2015)

    ADS  Google Scholar 

  7. K. Ramesha, A. Llobet, T.h. Proffen, C.R. Serrao, C.N.R Rao, J. Phys. Condens. Matter. 19, 102202 (2007)

  8. W.J. Weber, C.W. Griffin, J.L. Bates, J. Am. Ceram. Soc. 70, 265 (1987)

    Article  Google Scholar 

  9. A.K. Mall, A. Garg, R. Gupta, J. Eu. Ceram. Soc. 38, 5359 (2018)

    Article  Google Scholar 

  10. W.J. Weber, J.L. Bates, C.W. Griffin, L.C. Olsen, MRS. Proc. 60, 235 (1985)

    Article  Google Scholar 

  11. A.M. Glazer, Crystallogr. Cryst. Chem. 28, 3384 (1972)

    Article  Google Scholar 

  12. S. Krishnan, C.S. Sandeep, R. Philip, N. Kalarikkal, Chem. Phys. Lett. 529, 59 (2012)

    Article  ADS  Google Scholar 

  13. E. Hanamura, Y. Tanabe, Recent Res. Dev. Phys. 4, 191 (2003)

  14. A. Zhigalkina, T.D. Nikolaeva, Yu.L. Suponitskii, B.I. Polyak, Glass Ceram. 55, 182 (1998)

    Article  Google Scholar 

  15. V. Rao, Mannepalli, R. Ramadurai, J. Matter Sci: Matter. Elec. 28, 8087 (2017)

  16. J.T. Looby, L. Katz, J. Am. Chem. Soc. 76, 6029 (1954)

    Article  Google Scholar 

  17. K. Sardar, M.R. Lees, R.J. Kashtiban, J. Sloan, R.I. Walton, Chem. Mater. 23, 48 (2011)

    Article  Google Scholar 

  18. M.Q. Awan, A.R. Makhdoom, J. Ahmad, S.U. Asif, L. Loran, W. Hu, Y. Liu, Phys. B 581, 411949 (2020)

    Article  Google Scholar 

  19. S.U. Asif, J. Wang, Y. Qian, D. Gao, R. Bashir, M.K. Bilal, J. Ahmad, M.Q. Awan, W. Hu, Solid State Ionics 344, 115092 (2020)

    Article  Google Scholar 

  20. J. Ahmad, A.R Makhdoom, M. Sabir1, S.U. Asif, M.Q. Awan, Phys. Scr. 94, 105814 (2019)

  21. A. Duran, R. Escamilla, R. Escudero, F. Morales, E. Verdin, Phys Rev Mat 2, 012209 (2018)

    Google Scholar 

  22. A.K. Mall, A. Garg, R. Gupta, Mater Res. Express 4, 076104 (2017)

    Article  ADS  Google Scholar 

  23. C.L. Li, S. Huang, X.X. Li, C.M. Zhu, G. Zerihum, C.Y. Yin, C.L. Lu et al., J. Magn. Mater 432, 77 (2017)

    Article  ADS  Google Scholar 

  24. A. Duran, E. Verdin, A. Conde, R. Escamilla, J. Magn. Magn. Mater. 453, 36 (2018)

    Article  ADS  Google Scholar 

  25. P.M. Woodward, Acta Crystallogr Sect B Struct Sci 53, 32 (1997)

    Article  Google Scholar 

  26. Y. Zhao, D.J. Weidner, J.B. Parise, D.E. Cox, Thermal expansion and structural distortion of perovskite. Phys. Earth Planet In. 76, 1 (1993)

    Article  ADS  Google Scholar 

  27. A.K. Jonscher, The “universal” dielectric response. Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  28. A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela, Appl. Phys. Lett. 73, 2039 (1998)

    Article  ADS  Google Scholar 

  29. R.S. Elliott, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36, 135 (1987)

    Article  ADS  Google Scholar 

  30. A. Ghosh, Transport properties of vanadium germanate glassy semiconductors. Phys. Rev. B 42, 5665 (1990)

    Article  ADS  Google Scholar 

  31. A.R. Long, Frequency-dependent loss in an amorphous semiconductor. Adv. Phys. 31, 553 (1982)

    Article  ADS  Google Scholar 

  32. M. Pollak, On the frequency dependence of conductivity in amorphous solids. Philos. Mag. 23, 519 (1971)

    Article  ADS  Google Scholar 

  33. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B. 77, 14111 (2008)

    Article  ADS  Google Scholar 

  34. W.J. Weber, C.W. Griffing, J.L. Bates, J. Am. Ceram. Soc. 70, 265 (1987)

    Article  Google Scholar 

  35. D.P. Karim, A.T. Aldred, Phys. Rev. B 20, 2255 (1979)

    Article  ADS  Google Scholar 

  36. K.S. Cole, R.H. Cole, Dispersion, and absorption in dielectric I. J. Chem. Phys. 9, 341 (1941)

    Article  ADS  Google Scholar 

  37. R.P. Tandon, S. Hotcchandani, Electrical conductivity of semiconducting tungsten oxide glasses. Phys. Status Solid A 185, 453 (2001)

    Article  ADS  Google Scholar 

  38. C.A. Randall, A.S. Bhalla, T.R. Shrout, L.E. Cross, J. Mater. Res. 5, 829 (1990)

    Article  ADS  Google Scholar 

  39. L.E. Cross, Relaxor ferroelectrics. Ferroelec. 76, 241 (1987)

    Article  ADS  Google Scholar 

  40. R. Bergman, J. Appl. Phys. 88, 1356 (2000)

    Article  ADS  Google Scholar 

  41. K.W. Wagner, Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  42. H. Nefzi, F. Sediri, H. Hamzaoui, N. Gharbi, Mater. Res. Bull. 48, 1978 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the SERB, Department of Science and Technology (DST), Government of India (Project No. EMR/2016/004926). The authors also like to acknowledge the financial and instrumental support of the Center of Excellence in Advanced Materials, NIT Durgapur.

Author information

Authors and Affiliations

Authors

Contributions

Pradipta Chakraborty: development or design of experiment, data collection, data formal analysis and interpretation, writing—original draft, writing—review and editing, and visualization. Santanu Dey: collection of some data, data formal analysis, writing—original draft, and visualization. Shovan Kumar Kundu: collection of some data, data formal analysis, writing—original draft, and visualization. Soumen Basu: conceptualization, development or design of experiment, methodology, validation, resources, writing—original draft, and supervision. National Institute of Technology Durgapur, India: project implementation.

Corresponding author

Correspondence to Pradipta Chakraborty.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, P., Dey, S., Kundu, S.K. et al. Influence of Sm and Fe Co-doping on Structural and Electrical Features of Yttrium Chromite Nanoparticles. Braz J Phys 53, 60 (2023). https://doi.org/10.1007/s13538-023-01279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01279-9

Keywords

Navigation