Skip to main content
Log in

Effect on structural, optical, electrical, and magnetic properties of Ce and Ni co-doped SmFeO3 nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, nano-crystalline powder samples of Sm0.96Ce0.04Fe1−xNixO3 (0 ≤ x ≤ 0.3; step size = 0.1) have been synthesised via cost-effective sol–gel auto-combustion route and characterised through various analytical techniques to probe the effect of Ce and Ni co-doping on various physical properties of the system under investigation. Rietveld refinement of X-ray diffraction (XRD) patterns along with FTIR spectra elucidates the successful formation of orthorhombic crystal symmetry having Pbnm (D2h16) space group. Williamson–Hall (W–H) analysis has been employed to calculate the average crystallite size and micro-strain induced within the crystal lattice via co-doping. The average particle size evaluated from Transmission electron microscopy (TEM) is concomitant with the W–H findings. UV–Visible spectroscopy corroborates a significant redshift in the energy band-gap from 2.51 to 1.97 eV, whereas there is an increase in the Urbach energy on increasing Ni concentration. Various optical parameters including skin depth, extinction coefficient, and optical conductivity have been realised. Sm0.96Ce0.04Fe0.7Ni0.3O3 exhibits the most prominent ferromagnetic behaviour with remarkably higher values of the magnetisation, coercive field, and remanent magnetisation. In addition, the exchange bias (EB) effect is perceived attributed to the “cluster glass” states for all the samples. DC resistivity data shows typical semi-conducting-like behaviour of all the prepared samples and systematic reduction in the activation energy on the incorporation of Ni ions. The frequency-dependent dielectric measurements divulge the usual dielectric dispersion behaviour. The AC conductivity data obeys the Jonscher power law. Nyquist plots of the studied samples indicate the presence of a non-Debye type of relaxation phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data generated and analysed during the current study are not publicly available but may be made available from the corresponding author if request is genuine.

References

  1. S.A. Mir, M. Ikram, K. Asokan, Adv. Mater. Lett. 6, 1081–1087 (2015)

    Article  CAS  Google Scholar 

  2. L. Chen, T. Li, S. Cao, S. Yuan, F. Hong, J. Zhang, J. Appl. Phys. 111, 103905 (2012)

    Article  Google Scholar 

  3. S. Yuvaraj, S. Layek, S.M. Vidyavathy, M. Danielle, R.K. Selvan, Mater. Res. Bull. 72, 77–82 (2015)

    Article  CAS  Google Scholar 

  4. R. Maity, A. Pradhan, A. Dutta, T.P. Sinha, Mater. Chem. Phys. 223, 78–87 (2019)

    Article  CAS  Google Scholar 

  5. H. Liang, H. Xing, M. Qin, H. Wu, Compos. Part A 135, 105959 (2020)

    Article  CAS  Google Scholar 

  6. H. Liang, L. Zhang, H. Wu, Small 38, 2203620 (2022)

    Article  Google Scholar 

  7. S. Zhang, B. Cheng, Z. Jia, Z. Zhao, X. Jin, Z. Zhao, G. Wu, Adv. Compos. Mater. 5, 1658–1698 (2022)

    Article  Google Scholar 

  8. D. Lan, H. Zhou, H. Wu, J. Colloid Interface Sci. 633, 92–101 (2023)

    Article  CAS  Google Scholar 

  9. J.H. Lee, Y.K. Jeong, J.H. Park, M.A. Oak, H.M. Jang, J.Y. Son, J.F. Scott, Phys. Rev. Lett. 107, 1–5 (2011)

    Google Scholar 

  10. K. Praveena, P. Bharathi, H.L. Liu, K.B.R. Varma, Ceram. Int. 42, 13572–13585 (2016)

    Article  CAS  Google Scholar 

  11. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, J. Phys. D 49, 035302 (2015)

    Article  Google Scholar 

  12. A. Bashir, M. Ikram, R. Kumar, P.N. Lisboa-filho, P. Thakur, Mater. Sci. Eng. B 172, 242–247 (2010)

    Article  CAS  Google Scholar 

  13. J. Zhu, X. Wang, C. Song, Q. Liu, J. Sui, H. Zhang, Y. Long, J. Magn. Magn. Mater. 476, 568–573 (2019)

    Article  CAS  Google Scholar 

  14. W. Fan, Z. Sun, J. Wang, J. Zhou, K. Wu, J. Power Sources 312, 223–233 (2016)

    Article  CAS  Google Scholar 

  15. S.M. Bukhari, J.B. Giorgi, Solid State Ion 180, 198–204 (2009)

    Article  CAS  Google Scholar 

  16. K. Bouziane, A. Yousif, K. Hricovini, C. Richter, J. Appl. Phys. 97, 10–12 (2005)

    Article  Google Scholar 

  17. A. Kumar, A.S. Verma, S.R. Bhardwaj, Open Appl Phys. J. 1, 11–19 (2008)

    Article  CAS  Google Scholar 

  18. N. Zarrin, S. Husain, W. Khan, S. Manzoor, Sol-gel derived cobalt doped LaCrO3: Structure and physical properties. J. Alloys Compd. 784, 541–555 (2019)

    Article  CAS  Google Scholar 

  19. P. Tang, D. Ni, F. Cao, B. Li, J. Nansci. Nanotechnol. 16, 1151–1154 (2016)

    Article  CAS  Google Scholar 

  20. R.J. Wiglusz, K. Kordek, M. Małecka, A. Ciupa, M. Ptak, R. Pazik, P. Pohl, D. Kaczorowski, Dalt. Trans. 44, 20067–20074 (2015)

    Article  CAS  Google Scholar 

  21. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Mol. Struct. 1094, 91–97 (2015)

    Article  CAS  Google Scholar 

  22. M.A. Ahmed, N.G. Imam, M.K. Abdelmaksoud, Y.A. Saeid, J. Rare Earths. 33, 965–971 (2015)

    Article  CAS  Google Scholar 

  23. P.P. Khirade, S.D. Birajdar, A.V. Raut, K.M. Jadhav, Ceram. Int. 42, 12441–12451 (2016)

    Article  CAS  Google Scholar 

  24. H. Xu, X. Hu, L. Zhang, Cryst. Growth Des. 8, 2061–2065 (2008)

    Article  CAS  Google Scholar 

  25. R.F. Egerton, Physical Principles of Electron Microscopy (Springer Science & Business Media Inc, New York, 2005)

    Book  Google Scholar 

  26. S. Gupta, R. Medwal, S.P. Pavunny, D. Sanchez, R.S. Katiyar, Ceram. Int. 44, 4198–4203 (2018)

    Article  CAS  Google Scholar 

  27. M. Mohsin, N. Ansari, S. Khan, N. Ahmad, J. Magn. Magn. Mater. 465, 81–87 (2018)

    Article  Google Scholar 

  28. X.X. Wang, S. Gao, X. Yan, Q. Li, J.C. Zhang, Y.Z. Long, K.Q. Ruan, X.G. Li, Phys. Chem. Chem. Phys. 20, 3687–3693 (2018)

    Article  CAS  Google Scholar 

  29. S. Manzoor, S. Husain, J. App. Phys. 124, 065110 (2018)

    Article  Google Scholar 

  30. M.D. Scafetta, A.M. Cordi, J.M. Rondinelli, S.J. May, J. Phys. Condens. Matter. 26, 505502 (2014)

    Article  Google Scholar 

  31. K.A. Aly, A.M.A. Elnaeim, M.A.M. Uosif, O. Abdel-Rahim, Phys. B 406, 4227–4232 (2011)

    Article  CAS  Google Scholar 

  32. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  33. J. Melsheimer, D. Ziegler, Thin Solid Films 129, 35–47 (1985)

    Article  CAS  Google Scholar 

  34. A. Sharma, N. Mehta, A. Kumar, J. Mater. Sci. 46, 4509–4516 (2011)

    Article  CAS  Google Scholar 

  35. M. Karimi, M. Rabiee, F. Moztarzadeh, M. Tahriri, M. Bodaghi, Curr. Appl. Phys. 9, 1263–1268 (2009)

    Article  Google Scholar 

  36. N.F. Habubi, S.F. Oboudi, S.S. Chiad, J. Nano- Electron. Phys. 4, 4–7 (2012)

    Google Scholar 

  37. S.R. Logan, J. Chem. Educ. 59, 279–281 (1982)

    Article  CAS  Google Scholar 

  38. A. Jaiswal, R. Das, T. Maity, P. Poddar, J. Appl. Phys. 110, 124301 (2011)

    Article  Google Scholar 

  39. I. Bhat, S. Husain, W. Khan, S.I. Patil, Mater. Res. Bull. 48, 4506–4512 (2013)

    Article  CAS  Google Scholar 

  40. N. Zarrin, S. Husain, S. Sharma, A. Somvanshi, S. Manzoor, W. Khan, J. Phys. Chem. Solids. 138, 10928 (2020)

    Article  Google Scholar 

  41. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18, 115028 (2009)

    Article  Google Scholar 

  42. L.B. Hao, D.X. Zhou, S.P. Gong, Q.Y. Fu, W. Luo, G. Jian, F. Xue, L. Zhou, J. Mater. Sci. Mater. Electron. 24, 2351–2356 (2013)

    Article  CAS  Google Scholar 

  43. I. Bhat, S. Husain, W. Khan, S.I. Patil, Mat. Res. Bull. 48, 4506–4512 (2013)

    Article  CAS  Google Scholar 

  44. S. Mehraj, M.S. Ansari, Alimuddin. Phys. E 65, 84–92 (2015)

    Article  CAS  Google Scholar 

  45. R.S. Devan, B.K. Chougule, J. Appl. Phys. 101, 014109 (2007)

    Article  Google Scholar 

  46. D. Ravinder, Mater. Lett. 43, 129–138 (2000)

    Article  CAS  Google Scholar 

  47. H.M. El-Mallah, Acta Phys. Pol. A 122, 174–179 (2012)

    Article  CAS  Google Scholar 

  48. K.L. Routray, D. Behera, J. Mater. Sci. Mater. Electron. 29, 14248–14260 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Surbhi Sharma gratefully acknowledges the University Sophisticated Instrument Facility (USIF) and Aligarh Muslim University (AMU) Aligarh for providing TEM facilities and Department of Chemistry, Aligarh Muslim University (AMU) Aligarh for the UV–Visible diffuse reflectance and FTIR spectroscopy facilities.

Author information

Authors and Affiliations

Authors

Contributions

The authors contribution to the research paper are as follows: Concept and design: SS, NS, and SK. Synthesis of materials and analysis of data: SS. Writing and reviewing: SS, NS, and SK. Theory and explanation: SS, NS, and SK. Supervision: SK.

Corresponding author

Correspondence to Shakeel Khan.

Ethics declarations

Conflict of interest

No conflicts of interest amongst the authors associated with this publication.

Ethical approval

We declare that this manuscript is original and has not been published before and is not currently being considered for publication elsewhere. All authors give their consent to submit this paper in this esteemed journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Ahmad, N. & Khan, S. Effect on structural, optical, electrical, and magnetic properties of Ce and Ni co-doped SmFeO3 nanostructures. J Mater Sci: Mater Electron 34, 476 (2023). https://doi.org/10.1007/s10854-023-09917-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09917-3

Navigation