Skip to main content
Log in

Influence of trivalent lanthanides substitution on the thermoelectric properties of nanostructured Ca1−xLn3 +xMnO3−δ (Ln3+ = Sm, Ce, La; x = 0, 0.1)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mesoporous Ca1−xLn3 +xMnO3 (Ln3+ = Sm, Ce, La; x = 0, 0.1) nanoparticles were prepared by sol–gel hydrothermal method followed by annealing under oxygen atmosphere at 950 °C. The systematic analysis revealed that due to the influence of lanthanides substitution, significant changes were occurring on the electrical and thermoelectric properties of the material. The synthesized nanopowders were characterized by XRD, Raman analysis, SEM with EDAX, HRTEM and thermoelectric measurement. Structural analysis confirmed the orthorhombic perovskite structure without distortions and the cell volume increased with a rise in the ionic radius of the Ln3+ ions. Microstructure and EDAX analysis demonstrated the grain size and stoichiometry of all the samples. HRTEM analysis is used to measure the size and shape of the nanoparticles. The physical properties of Ca0.9Ln3+0.1MnO3 nanoparticles exhibit metallic behavior with increasing temperature whereas undoped CaMnO3 shows semiconducting behavior. The electrical and thermoelectric measurements proved that Ca0.9Sm0.1MnO3 nanoparticle showed high Seebeck coefficient value, large electrical resistivity, and significant power factor, indicating a potential n-type thermoelectric material at elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Choi, A. Fuller, J. Davis, C. Weilgus, U.S. Ozkan, Ce-doped strontium cobalt ferrite perovskites as cathode catalysts for solid oxide fuel cells: effect of dopant concentration. Appl. Catal. B 127, pp. 336–341, (2012), https://doi.org/10.1016/j.apcatb.2012.08.027.

    Article  CAS  Google Scholar 

  2. H. C. Wang, W.B.Su, J. Liu, C.Wang, Recent development of n-type perovskite thermoelectrics. J Mater.2(3), 225–236 (2016). Doi:https://doi.org/10.1016/j.jmat.2016.06.005

    Article  Google Scholar 

  3. Stephen J. Skinner, Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorgan. Mater.3(2), 113–121 (2001). Doi:https://doi.org/10.1016/S1466-6049(01)00004-6

    Article  CAS  Google Scholar 

  4. W. Menesklou, H. J. Schreiner, K. H. Härdtl, E. I. Tiffée, High temperature oxygen sensors based on doped SrTiO3,. Sens Actuators B59, 2–3 (1999). Doi:https://doi.org/10.1016/S0925-4005(99)00218-X. 184–189.

    Article  Google Scholar 

  5. L.F. Schneemeyer, J.V. Waszczak, S.M. Zahorak, R.B. van Dover, T.Siegrist, Superconductivity in rare earth cuprate perovskites. Materials Research Bulletin. 22(11), 1467–1473 (1987). Doi:https://doi.org/10.1016/0025-5408(87)90211-X

    Article  CAS  Google Scholar 

  6. D.M. Rowe, Thermoelectrics handbook: macro to nano, pp. 1-3, 1st edn. (CRC Press, Boca Raton, FL, 2006), pp. 1–7

    Google Scholar 

  7. J.G. Noudem, D. Kenfaui, S. Quetel Weben, C.S. Sanmathi, R. Retoux, M. Gomina, Spark plasma sintering of n-type thermoelectric Ca0.95Sm0.05MnO3. J. Am. Chem. Soc. 94(8), 2608–2612 (2011). Doi:https://doi.org/10.1111/j.1551-2916.2011.04465.x

    Article  CAS  Google Scholar 

  8. M.E. Melo Jorge, M.R. Nunes, R. Silva Maria, D. Sousa, Metal—insulator transition induced by Ce doping in CaMnO3, Chem. Mater. 17(8), 2069–2075 (2005). Doi: https://doi.org/10.1021/cm040188b

  9. Y. Wang, Y. Sui, H. Fan, X. Wang, Y. Su, W. Su, X. Liu High Temperature thermoelectric response of electron-doped CaMnO3, Chem. Mater. 21, 4653–4660 (2009). Doi: https://doi.org/10.1021/cm901766y

  10. D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, K. Koumoto, Thermoelectrical properties of A-site substituted Ca1 – xRexMnO3 system. J. Appl. Phys. 100(8), 084911 (2006). Doi:https://doi.org/10.1063/1.2362922

    Article  CAS  Google Scholar 

  11. B.S. Nagaraja, P. Ashok Rao, G.S. Poornesh, Okram, Effect of rare earth ionic radii on structural, electric, magnetic and thermoelectric properties of REMnO3 (RE = Dy, Gd, Eu and Sm) manganites. J.Supercond. Novel Magn. 31: 2271 (2018). Doi: https://doi.org/10.1007/s10948-017-4505-7

  12. Y. Wang, Y. Sui, X. Wang, W. Su, Correlation of structural distortion with magnetic properties in electron-doped Ca0.9R0.1MnO3 perovskites (R = rare-earth). J. Appl. Phys. 108(6) (2010) 063928-063928-9. Doi: https://doi.org/10.1063/1.3481419

  13. Y. Li, S. Hao, X. Xia, Preparation, structure, and electrical properties of Ca1 – x Er x MnO3 Powders. J. Electron. Mater. 42, 745–751 (2013). Doi:https://doi.org/10.1007/s11664-012-2445-3

    Article  CAS  Google Scholar 

  14. C.S. Park, M.H. Hong, S. Shin, H.H. Cho, H.H. Park, Synthesis of mesoporous La0.7Sr0.3MnO3 thin films for thermoelectric materials. J. Alloys Compd. 632, 246–250 (2015). Doi:https://doi.org/10.1016/j.jallcom.2015.01.188

    Article  CAS  Google Scholar 

  15. T.M.H. Dang, V.D. Trinh, D. H. Bui, M. H. Phan, D. C. Huynh, Sol–gel hydrothermal synthesis of strontium hexaferrite nanoparticles and the relation between their crystal structure and high coercivity properties. Adv. Nat. Sci.: Nanosci Nanotechnol. 3, 025015 (7 pp) (2012). Doi:https://doi.org/10.1088/2043-6262/3/2/025015

    Article  CAS  Google Scholar 

  16. C.-S. Park, WooJe Han, D.I. Shim, H.H. Cho, H.-H. Park, The effect of mesoporous structure on the thermoelectric properties of bonstoichiometric La-doped SrTiO3. J. Electrochem. Soc. 163(6), E155–E158 (2016). Doi:https://doi.org/10.1149/2.0441606jes

    Article  CAS  Google Scholar 

  17. Y.-J. Chou, B.-J. Hong, Y.-C. Lin, C.-Y. Wang, S.-J. Shih, The correlation of pore size and bioactivity of spray-pyrolyzed mesoporous bioactive glasses, , Materials (Basel). 2017 May; 10(5): 488. Doi: https://doi.org/10.3390/ma10050488

  18. P. Thiel, J. Eilertsen, S. Populoh, G. Saucke, M. Döbeli, A. Shkabko, L. Sagarna, L. Karvonen, A. Weidenkaff, Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO3–δ. J. Appl. Phys. 114, 243707 (2013). Doi:https://doi.org/10.1063/1.4854475

    Article  CAS  Google Scholar 

  19. S. BerbethMary, M. Francis, V.G. .Sathe, V. Ganesan, A. Leo Rajesh, Enhanced thermoelectric property of nanostructured CaMnO3 by sol–gel hydrothermal method. Physica B 575, 411707 (2019). Doi:https://doi.org/10.1016/j.physb.2019.411707

    Article  CAS  Google Scholar 

  20. M. Mouyane, B. Itaalit, J. Bernarda, D. Houivet, J.G. Noudem, Flash combustion synthesis of electron doped-CaMnO3 thermoelectric oxides. Powder Technol. 264, 71–77 (2014). Doi:https://doi.org/10.1016/j.powtec.2014.05.022

    Article  CAS  Google Scholar 

  21. J. Dukic, S. Bosˇkovic, B. Matovic, Crystal structure of Ce-doped CaMnO3 perovskite. Ceram. Int. 35, 787–790 (2009). Doi:https://doi.org/10.1016/j.ceramint.2008.02.023

    Article  CAS  Google Scholar 

  22. B.D. Gulity, Elements of X-ray diffraction, 2nd edn. (Addition–Wesley, USA, 1987)

    Google Scholar 

  23. S. Merten, V. Bruchmann-Bamberg, B. Damaschke, K. Samwer, V. Moshnyaga, ahn-Teller reconstructed surface of the doped manganites shown by means of surface-enhanced Raman spectroscopy, Phys. Rev. Mater. 3, 060401(R) (2019). Doi: https://doi.org/10.1103/PhysRevMaterials.3.060401

  24. S. Keshavarz, Y.O. Kvashnin, D.C.M. Rodrigues, M. Pereiro, I. Di Marco, C. Autieri, L. Nordström, I.V. Solovyev, B. Sanyal, O. Eriksson, Exchange interactions of CaMnO3 in the bulk and at the surface. Phys. Rev. B 95, 115120 (2017)

    Article  Google Scholar 

  25. M. Abrashev, J. Bäckström, L. Börjesson, M. Pissas, N. Kolev, M. Iliev. Raman spectroscopy of the charge- and orbital-ordered state in La0.5Ca0.5MnO3. Phys. Rev. B. 64(14) (2001). Doi:https://doi.org/10.1103/physrevb.64.144429

  26. M.N. Iliev, M.V. Abrashev, V.N. Popov, V.G. Hadjiev, Role of Jahn-Teller disorder in Raman scattering of mixed-valence manganites. Phys. Rev. B. 67, 212301–2003. Doi: https://doi.org/10.1103/PhysRevB.67.212301

  27. M.V. Abrashev, J. Bäckström,, L. Börjesson, V.N. Popov, R.A. Chakalov, N. Kolev, R.-L. Meng, M.N. Iliev, Raman spectroscopy of CaMnO3: Mode assignment and relationship between Raman line intensities and structural distortions. Phys. Rev. B. 65, 184301. Doi: https://doi.org/10.1103/PhysRevB.65.184301

  28. T. Mori, N. Kamegashira, K. Aoki, T. Shishido, T. Fukuda, Crystal growth and crystal structures of the LnMnO3 perovskites: Ln = Nd, Sm, Eu and Gd. Mat. Lett. 54(2–3), 238–243 (2002). Doi:https://doi.org/10.1016/s0167-577x(01)00569-9

    Article  CAS  Google Scholar 

  29. J. Niu, J.Deng, W. Liu, L. Zhang, G. Wang, H. Dai, H. He, X. Zi, Nanosized perovskite-type oxides La1 – xSrxMO3–δ (M = Co, Mn; x = 0, 0.4) for the catalytic removal of ethylacetate. Catal. Today 126, 420–429 (2007). Doi:https://doi.org/10.1016/j.cattod.200s7.06.027

  30. M.G. Naseri, E. Saion, N.K. Zadeh, The amazing effects and role of PVP on the crystallinity, phase composition and morphology of nickel ferrite nanoparticles prepared by thermal treatment method. Int. Nano Lett.3, 19 (2013). Doi:https://doi.org/10.1186/2228-5326-3-19

    Article  CAS  Google Scholar 

  31. W. Xiaa, L. Lia, H. Wua, P. Xuea, X. Zhua, Structural, morphological, and magnetic properties of sol–gel derived La0.7Ca0.3MnO3 manganite nanoparticles, Ceram. Int. 43 (2017) 3274–3283, Doi:https://doi.org/10.1016/j.ceramint.2016.11.160

  32. Lee, S.Y., Kim, D.H., Choi, S.C., Lee, D.J., Choi, J.Y., Kim, H.D., Porous multi-walled carbon nanotubes by using catalytic oxidation via transition metal oxide. Microporous Mesoporous Mater. 194, 46–51 (2014). Doi:https://doi.org/10.1016/j.micromeso.2014.03.040

    Article  CAS  Google Scholar 

  33. J. Lee, H. Zhu, G.G. Yadav, J. Caruthers, Y. Wu, Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles. Nano Res.9, 996–1004 (2016). Doi:https://doi.org/10.1007/s12274-016-0987-z

    Article  CAS  Google Scholar 

  34. M. Ohtaki, H. Koga, T. Tokunaga, KoichiEguchi, HiromichiArai, Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi), J. Solid State Chem. 120 (1) (1995) 105–111. Doi: https://doi.org/10.1006/jssc.1995.1384

  35. A. Jiamprasertboon, Y. Okamoto, Z. Hiroi, T. Siritanon, Thermoelectric properties of Sr and Mg double-substituted LaCoO3 at roomtemperature, Ceram. Int. doi: https://doi.org/10.1016/j.ceramint.2014.04.123

  36. G. Xu, R. Funahashi, Q. pu, B. Liu, R. Tao, G. Wang, Z. Ding, High-temperature transport properties of Nb and Ta substituted CaMnO3 system. Solid State Ion.171, 147–151 (2004)

    Article  CAS  Google Scholar 

  37. F.C. Fonseca, J.A. Souza, R.F. Jardim, R. Muccillo, E.N.S. Muccillo, D. Gouveˆa, M.H. Jung, A.H. Lacerda, Transport properties of La0.6Y0.1Ca0.3MnO3 compounds with different interfaces.J. Eur. Ceram. Soc. 24, 1271–1275 (2004). Doi:https://doi.org/10.1016/S0955-2219(03)00446-1

    Article  CAS  Google Scholar 

  38. J.W. Park, D.H. Kwakb, S.H. Yoonb, S.C. Choi, Thermoelectric properties of Bi, Nb co-substituted CaMnO3 at high temperature. J.Alloys Compd. 487, 550–555 (2009). Doi:https://doi.org/10.1016/j.jallcom.2009.08.012

    Article  CAS  Google Scholar 

  39. B. Gröger, J. Kulawik, D. Szwagierczak, A. Skwarek, Influence of various lanthanides on the properties of Sr0.8Ce0.1Ln0.1MnO3–δ and Sr0.9Ce0.05Ln0.05CoO3–δ ceramics and thick film electrodes. Solid State Ion. 180, 872–877 (2009). Doi:https://doi.org/10.1016/j.ssi.2009.02.012

    Article  CAS  Google Scholar 

  40. Y. Wang, Y. Sui, X. Wang, W/ Su, Effects of substituting La3+, Y3+ and Ce 4+ for Ca2+ on the high temperature transport and thermoelectric properties of CaMnO3. J. Phys. D 42, 055010 (10 pp) (2009). Doi:https://doi.org/10.1088/0022-3727/42/5/055010

  41. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, H. Arai, Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi), J. Solid State Chem. 120 (1):105–111 (1995). Doi: https://doi.org/10.1006/jssc.1995.1384

  42. X.H. Zhang, J.C. Li, Y.L. Du, F.N. Wang, H.Z. Liu, Y.H. Zhu, J. Liu, W.B. Su, C.L. Wang, L.M. Mei, Thermoelectric properties of A-site substituted Lanthanide Ca0.75 R0.25MnO3J.Alloys Compd.634, 1–5 (2015). Doi:https://doi.org/10.1016/j.jallcom.2015.02.074

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Leo Rajesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mary, S.B., Rajesh, A.L. Influence of trivalent lanthanides substitution on the thermoelectric properties of nanostructured Ca1−xLn3 +xMnO3−δ (Ln3+ = Sm, Ce, La; x = 0, 0.1). J Mater Sci: Mater Electron 31, 6479–6487 (2020). https://doi.org/10.1007/s10854-020-03205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03205-0

Navigation