Skip to main content
Log in

Comparative Analysis of Statistical and Fractional Approaches for Thermal Conductance Through Suspension of Ethylene Glycol Nanofluid

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

There is no refusing fact that heat transfer is of particular interest to engineers, who control the flow of heat through the use of heat exchangers and thermal insulation for understanding the crucial role of thermal conductivity, viscosity, and cooling efficiency of nanofluids. This manuscript presents the engineering aspects of heat transfer through the nanoparticles (magnetite, aluminum oxide, titanium oxide, and copper) suspended in ethylene glycol and water-based nanofluids with heat absorption and Dufour effects. For the first time, a comparative analysis of statistical and fractional approaches has been investigated on the basis of analytical solutions. The statistical data is obtained for concentration and temperature distributions by varying time, fractional parameter, and Schmidt, Prandtl, and Dufour numbers. The core objective of statistical approach is to analyze the rate of heat transfer based on the correlation with probable error and regression analysis for predicting the relationship among effective parameters, concentration, and temperature distributions. In order to check the rheology of nanoparticles suspended in ethylene glycol and water-based nanofluids, a comparative analysis of velocity field for nanofluids is depicted for higher/lower rate of heat transfers from embedded nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S.U. Choi, Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-Newtonian flows, D. A Springer and H. P. Wang, Eds., ASME 66, 99–105 (1995)

  2. J. Buongiorno, Convective transport in nanofluids. ASME J. Heat Transf 128(3), 240–250 (2006)

    Article  Google Scholar 

  3. R. Ulzie, M.K. Tom, H. Lin-Wen, J. Buongiorno, Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia-water nanofluids. Int. J. Heat. Mass. Transfer. 52, 2042–2048 (2009)

    Article  Google Scholar 

  4. A.A. Kashif, D.C. Ali, A.A. Irfan, K. Ilyas, Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium. J. Therm. Anal. Calorim. 1–11 (2018). https://doi.org/10.1007/s10973-018-7302-z

  5. W. Zan, W. Lei, S. Bengt, Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger. Appl. Therm. Eng. 60, 266–274 (2013)

    Article  Google Scholar 

  6. K.A. Abro, K. Ilyas, J.F. Gomez-Aguilar, Heat transfer in magnetohydrodynamic free convection flow of generalized ferrofluid with magnetite nanoparticles. J. Thermal. Anal. Calorim. https://doi.org/10.1007/s10973-019-08992-1

  7. A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  8. R.S.R. Gorla, A. Hossain, Mixed convective boundary layer flow over a vertical cylinder embedded in a porous medium saturated with a nanofluid. Int. J. Numer. Meth. Heat. Fluid. Flow. 23(8), 1393–1405 (2013)

    Article  MathSciNet  Google Scholar 

  9. A.J. Chamkha, S.E. Ahmed, Unsteady MHD heat and mass transfer by mixed convection flow in the forward stagnation region of a rotating sphere at different wall conditions. Chem. Eng. Commun. 199(1), 122–141 (2012)

    Article  Google Scholar 

  10. B.S. Chen, C.C. Liu, Entropy generation in mixed convection magnetohydrodynamic nanofluid flow in vertical channel. Int. J. Heat. Mass. Transfer. 91, 1026–1033 (2015)

    Article  MathSciNet  Google Scholar 

  11. A.A. Kashif, M.R. Mohammad, K. Ilyas, A.A. Irfan, T. Asifa, Analysis of Stokes’ second problem for nanofluids using modern fractional derivatives. J. Nanofluids 7, 738–747 (2018)

    Article  Google Scholar 

  12. K.A. Abro, K. Ilyas, Effects of CNTs on magnetohydrodynamic flow of methanol based nanofluids via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. Therm. Sci. 23, 883–898 (2019). https://doi.org/10.2298/TSCI180116165A

    Article  Google Scholar 

  13. K. Umer, N. Ahmed, S.T. Mohyud-Din, Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. Neural. Comput. Appl. 28(1), 37–46 (2017). https://doi.org/10.1007/s00521-015-2035-4

    Article  Google Scholar 

  14. M. Sheikholeslami, H. Rokni, B, Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int. J. Heat Mass Transf. 118, 823–831 (2018)

    Article  Google Scholar 

  15. A.A. Kashif, H. Mukarrum, M.B. Mirza, An analytic study of molybdenum disulfide nanofluids using modern approach of Atangana-Baleanu fractional derivatives, European Physical Journal Plus. Eur. Phys. J. Plus 132, 439 (2017). https://doi.org/10.1140/epjp/i2017-11689-y

    Article  Google Scholar 

  16. M. Xiaojie, M. Sheikholeslami, M. Jafaryar, S. Ahmad, N. Trung, Zhixiong Li, Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J. Clean. Prod. 245, 118888 (2020). https://doi.org/10.1016/j.jclepro.2019.118888

    Article  Google Scholar 

  17. B. Souayeh, Kashif Ali Abro. Nisrin Alnaim, Muneerah Al Nuwairan, Najib Hdhiri, Essam Yasin, Heat transfer characteristics of fractionalized hydromagnetic fluid with chemical reaction in permeable media, Energies 15, 2196 (2022). https://doi.org/10.3390/en15062196

    Article  MathSciNet  Google Scholar 

  18. Aziz Ullah Awan, Samia Riaz, Maryam Ashfaq, Kashif Ali Abro, A scientific report of singular kernel on the rate-type fluid subject to the mixed convection flow. Soft. Comput. (2022). https://doi.org/10.1007/s00500-022-06913-3

    Article  Google Scholar 

  19. B. Souayeh, Kashif Ali Abro. Huda Alfannakh, Muneerah Al Nuwairan, and Amina Yasin, Application of Fourier sine transform to carbon nanotubes suspended in ethylene glycol for the enhancement of heat transfer, Energies 15, 1200 (2022). https://doi.org/10.3390/en15031200

    Article  MathSciNet  Google Scholar 

  20. W.A. Khan, A.M. Rashad, M.M.M. Abdou, I. Tlili, Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone. Eur. J. Mech. B Fluids 75, 133–142 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. A.A. Kashif, K. Ilyas, F.G.A. José, Thermal effects of magnetohydrodynamic micropolar fluid embedded in porous medium with Fourier sine transform technique. J. Braz. Soc. Mech. Sci. Eng. 41, 174–181 (2019). https://doi.org/10.1007/s40430-019-1671-5

    Article  Google Scholar 

  22. O. Makinde, I. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Therm. Sci. 109, 159–171 (2016)

    Article  Google Scholar 

  23. K.A. Abro, J.F. Gomez-Aguilar, A comparison of heat and mass transfer on a Walter’s-B fluid via Caputo-Fabrizio versus Atangana-Baleanu fractional derivatives using the Fox-H function. Eur. Phys. J. Plus 134, 101 (2019). https://doi.org/10.1140/epjp/i2019-12507-4

    Article  Google Scholar 

  24. C.H. Amanulla, A. Wakif, Z. Boulahia, S. Fazuruddin, M.S. Noor, A study on non-Newtonian transport phenomena in Mhd fluid flow from a vertical cone with Navier slip and convective heating. Nonlinear Eng. 8, 534–545 (2019)

    Article  ADS  Google Scholar 

  25. K.A. Abro, B. Souayeh, K. Malik, A. Atangana, Chaotic characteristics of thermal convection at smaller verse larger Prandtl number through fractal and fractional differential operators from nanofluid. Int. J. Model. Simul. (2022). https://doi.org/10.1080/02286203.2021.2018261

    Article  Google Scholar 

  26. A.J. Chamkha, A.S. Dogonchi, D.D. Ganji, Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Adv. 9, 025103 (2019). https://doi.org/10.1063/1.5086247

    Article  ADS  Google Scholar 

  27. K.A. Abro, A fractional and analytic investigation of thermo-diffusion process on free convection flow: an application to surface modification technology. Eur. Phys. J. Plus. https://doi.org/10.1140/epjp/s13360-019-00046-7

  28. A.J. Chamkha, S. Sazegar, E. Jamesahar, M. Ghalambaz, Thermal non-equilibrium heat transfer modeling of hybrid nanofluids in a structure composed of the layers of solid and porous media and free nanofluids. Energies 12, 541 (2019)

    Article  Google Scholar 

  29. Kashif Ali Abro, Abdon Atangana, Jose Francisco Gomez-Aguilar, Ferromagnetic chaos in thermal convection of fluid through fractal–fractional differentiations. J. Therm. Anal. Calorim. (2021). https://doi.org/10.1007/s10973-021-11179-2

    Article  Google Scholar 

  30. R. Pourrajab, A. Noghrehabadi, M. Behbahani, Ebrahim Hajidavalloo, An efficient enhancement in thermal conductivity of water-based hybrid nanofluid containing MWCNTs-COOH and Ag nanoparticles: experimental study. J Therm Anal Calorim 143, 3331–3343 (2021). https://doi.org/10.1007/s10973-020-09300-y

    Article  Google Scholar 

  31. R. Pourrajab, A. Noghrehabadi, M. Behbahani, Thermo-hydraulic performance of mesoporous silica with Cu nanoparticles in helically grooved tube. Appl. Therm. Eng. 185, 116436 (2021)

  32. R. Pourrajab, A. Noghrehabadi, M. Behbahani, Development of Cu/mesoporous SBA-15 nanocomposite in ethylene glycol for thermal conductivity enhancement: heat transfer applications. Int. Commun. 119, 104931 (2020)

  33. R. Pourrajab, A. Noghrehabadi, E. Hajidavalloo, M. Behbahani, Investigation of thermal conductivity of a new hybrid nanofluids based on mesoporous silica modified with copper nanoparticles: synthesis, characterization and experimental study. J. Mol. Liq. 300, 112337 (2020)

  34. A.R. Rahmati, A.O. Akbari, A. Marzban, D. Toghraie, R. Karimi, F. Pourfattah, Simultaneous investigations the effects of non-Newtonian nanofluid flow in different volume fractions of solid nanoparticles with slip and no-slip boundary conditions. Therm. Sci. Eng. Prog. 5, 263–277 (2018). https://doi.org/10.1016/j.tsep.2017.12.006

  35. S. Rostami, D. Toghraie, B. Shabani, N. Sina, P. Barnoon, Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs). J. Therm. Anal. Calorim. 143, 1097–1105 (2021). https://doi.org/10.1007/s10973-020-09458-5

    Article  Google Scholar 

  36. M. Tohidi, D. Toghraie, The effect of geometrical parameters, roughness and the number of nanoparticles on the self-diffusion coefficient in Couette flow in a nanochannel by using of molecular. Physica B 518, 20–32 (2017). https://doi.org/10.1016/j.physb.2017.05.014

    Article  ADS  Google Scholar 

  37. H. Kavusi, Davood Toghraie. A comprehensive study of the performance of a heat pipe by using of various nanofluids, advanced powder technology 28, 3074–3084 (2017). https://doi.org/10.1016/j.apt.2017.09.022

    Article  Google Scholar 

  38. S. Soheil Oveissi, Ali Eftekhari. Davood Toghraie, Longitudinal vibration and instabilities of carbon nanotubes conveying fluid considering size effects of nanoflow and nanostructure, Physica E: Low dimensional systems and nanostructures 83, 164–173 (2016). https://doi.org/10.1016/j.physe.2016.05.010

    Article  ADS  Google Scholar 

  39. L. Bhojraj, K.A. Abro, W.S. Abdul, Thermodynamical analysis of heat transfer of gravity-driven fluid flow via fractional treatment: an analytical study. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09429-w

    Article  Google Scholar 

  40. K.A. Abro, A. Abdon, Mathematical analysis of memristor through fractal‐fractional differential operators: a numerical study. Math. Methods Appl. Sci. 1–18 (2020). https://doi.org/10.1002/mma.6378

  41. A.A. Kashif, A. Abdon, A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal–fractional differentiations. Eur. Phys. J. Plus 135, 226 (2020). https://doi.org/10.1140/epjp/s13360-020-00136-x

    Article  Google Scholar 

  42. A. Atangana, D. Baleanu, New fractional derivative with non local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  43. K.A. Abro, S. Ambreen, A. Abdon, Thermal stratification of rotational second-grade fluid through fractional differential operators. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09312-8

    Article  Google Scholar 

  44. A.A. Kashif, A. Abdon, Role of non-integer and integer order differentiations on the relaxation phenomena of viscoelastic fluid. Phys. Scr. 95, 035228 (2020). https://doi.org/10.1088/1402-4896/ab560c

    Article  Google Scholar 

  45. A.U. Aziz, M. Ali, K.A. Abro, Electroosmotic slip flow of oldroyd-B fluid between two plates with non-singular kernel. J. Comput. Appl. Math. 376, 112885 (2020). https://doi.org/10.1016/j.cam.2020.112885

  46. B. Souayeh, Kashif Ali Abro. Thermal characteristics of longitudinal fin with Fourier and non-Fourier heat transfer by Fourier sine transforms. Scientific Reports 11, 20993 (2021). https://doi.org/10.1038/s41598-021-00318-2

Download references

Acknowledgements

The authors are highly thankful and grateful to Mehran University of Engineering and Technology, Jamshoro, Pakistan, for generous support and facilities of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ali Abro.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abro, K.A., Atangana, A. & Memon, I.Q. Comparative Analysis of Statistical and Fractional Approaches for Thermal Conductance Through Suspension of Ethylene Glycol Nanofluid. Braz J Phys 52, 118 (2022). https://doi.org/10.1007/s13538-022-01115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01115-6

Keywords

Navigation