Skip to main content
Log in

Review of the influence of nanoparticles on thermal conductivity, nucleate pool boiling and critical heat flux

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Nanofluids, the fluid suspensions of nonmaterials, have shown many interesting properties and the unique features offer unprecedented potential for many applications. Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was first noted, about a decade ago, though much debate and inconsistency have been reported. Insufficient understanding of the formulation, mechanism of nanofluids further limits their applications [134]. Inconsistent data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers [3543] have noted an enhancement in the critical heat flux during nanofluid boiling. Some researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux augmentation. In the review, the future developments of these technologies are discussed. In order to be able to put the nanofluid heat transfer technologies into practice, fundamental of these studies are greatly needed to comprehend the physical mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Yu W, Xie H, Chen L, Li Y (2010) Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf A 355(1–3):109–113

    Article  Google Scholar 

  2. Wang L, Fan J (2010) Nanofluids research: key issues. Nanoscale Res Lett 5(8):1241–1252

    Article  Google Scholar 

  3. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289

    Article  Google Scholar 

  4. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13(4):474–480

    Article  Google Scholar 

  5. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2–water based nanofluids. Int J Therm Sci 44(4):367–373

    Article  Google Scholar 

  6. Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Transf 21:58–64

    Article  Google Scholar 

  7. Hwang YJ, Ahn YC, Shin HS, Lee CG, Kim GT, Park HS, Lee JK (2009) Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys

  8. Kestin J, Wakeham WA (1978) A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements. Phys A 92:102–116

    Article  Google Scholar 

  9. Das SK, Putta N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME Trans J Heat Transf 125:567–574

    Article  Google Scholar 

  10. Nagasaka Y, Nagashima A (1981) Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method. J Phys E Sci Instrum 14:1435–1440

    Article  Google Scholar 

  11. Roetzel W, Prinzen S, Xuan Y (1990) Measurement of thermal diffusivity using temperature oscillations. In: Cremers C, Fine H (eds) Thermal conductivity, vol 21. Plenum Press, New York, pp 201–207

    Google Scholar 

  12. Honda H, Takamastu H, Wei JJ (2002) Enhanced boiling of FC-72 on silicon chips with micro-pin fins and sub-micron scale roughness. J Heat Transf 124:383–390

  13. Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of 7-AI2O3, SiO2, and TiO2 ultra-fine particles). Netsu Bus-sei (Japan) 7(4):227–233

    Article  Google Scholar 

  14. Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91(7):4568–4572

    Article  Google Scholar 

  15. Hong T-K, Yang H-S, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97(6):1–4

    Google Scholar 

  16. Hong K, Hong T-K, Yang H-S (2006) Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 88(3):31901

    Article  Google Scholar 

  17. Xie H, Wang J, Xi T, Liu Y (2001) Study on the thermal conductivity of SiC nanofluids. J Chin Ceram Soc 29(4):361–364

    Google Scholar 

  18. Xie H, Wang J, Xi T, Liu Y (2002) Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys 23(2):571–580

    Article  Google Scholar 

  19. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam 1:182–191

    Article  Google Scholar 

  20. Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variation on the effective thermal conductivity of nanoparticle suspension (nanofluids). J Appl Phys 99(8):08431

    Google Scholar 

  21. Patel HE, Das SK, Sundararagan T, Nair AS, Geoge B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83:2931–2933

    Article  Google Scholar 

  22. Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG (2006) Thermal conductivity of nanoparticle suspensions. J Appl Phys 99(8):084308

    Article  Google Scholar 

  23. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–57

    Article  Google Scholar 

  24. Choi SUS, Zhang ZG, Yu W, LockWood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nano-tube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  25. Xie H, Lee H, Youn W, Choi M (2003) Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys 94(8):4967–4971

    Article  Google Scholar 

  26. Biercuk M, Llaguno M, Radosavljevic M, Hyun J, Johnson A, Fischer J (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769

    Article  Google Scholar 

  27. Llaguno M, Hone J, Johnson A, Fischer J (2001) Thermal conductivity of single-wall carbon nanotubes: diameter and annealing dependence. In: Kuzmany H, Fink J, Mehring M, Roth S (eds) AIP conference proceedings, vol 591. Woodbury, New York

  28. Choi ES, Brooks JS, Eaton DL, Al-Haik MS, Hussaini MY, Garmestani H, Li D, Dahmen K (2003) Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys 94(9):6034–6039

    Article  Google Scholar 

  29. Wen D, Ding Y (2004) Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophys Heat Transf 18(4):481–485

    Article  Google Scholar 

  30. Ding Y, Alias H, Wen D, Williams RA (2005) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49(1–2):240–250

    Google Scholar 

  31. Assael MJ, Chen CF, Metaxa IN, Wakeham WA (2003) Thermal conductivity of suspensions of carbon nanotubes in water. In: 15th symposium on thermophysical properties. National Institute of Standards, University of Colorado, Boulder, USA

  32. Assael MJ, Chen CF, Metaxa IN, Wakeham WA (2004) Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys 25(4):971–985

    Article  Google Scholar 

  33. Assael MJ, Metaxa IN, Arvanitidis J, Christofilos D, Lioutas C (2005) Thermal conductivity enhancement in aqueous suspensions of carbon multiwalled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 26(3):647–664

    Article  Google Scholar 

  34. Liu M-S, Ching-Cheng M, Ching-Cheng Lin M, Huang IT, Wang C-C (2005) Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf 32(9):1202–1210

    Article  Google Scholar 

  35. Witharana S (2003) Boiling of refrigerants on enhanced surfaces and boiling of nanofluids. Ph.D. thesis, The Royal Institute of Technology

  36. Li CH, Wang BX, Peng XF (2003) Experimental investigations on boilingof nano-particle suspensions. In: 2003 Boiling heat transfer conference, Jamica, USA

  37. Das SK, Putra N, Roetzel W (2003) Pool boiling of nano-fluids on horizontal narrow tubes. Int J Multiph Flow 29(8):1237–1247

    Article  MATH  Google Scholar 

  38. Bang IC, Chang SH (2004) Boiling heat transfer performance and phenomena of Al2O3–water nanofluids from a plain surface in a pool. In: Proceedings of ICAPP, Pitterburgh, USA

  39. Bang IC, Chang SH (2005) Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf 48(12):2420–2428

    Article  Google Scholar 

  40. Tu JP, Dinh N, Theofanous T (2004) An experimental study of nanofluid boiling heat transfer. In: Proceedings of 6th international symposium on heat transfer, Beijing, China

  41. You SM, Kim JH, Kim KH (2003) Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett 83:3374–3376

    Article  Google Scholar 

  42. Vassallo P, Kumar R, Amico SD (2004) Pool boiling heat transfer experiments in silica–water nano-fluids. Int J Heat Mass Transf 47:407–411

    Article  Google Scholar 

  43. Zhou DW (2004) Heat transfer enhancement of copper nanofluid with acoustic cavitations. Int J Heat Mass Transf 47:3109–3117

    Article  Google Scholar 

  44. Eastman JA, Choi SUS, Li S, Yu W, Thomson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    Article  Google Scholar 

  45. Li Y, Zhou J, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196(2):89–101

    Article  Google Scholar 

  46. Lo CH, Tsung TT, Chen LC (2005) Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis (SNASS). J Cryst Growth 277(1–4):636–642

    Article  Google Scholar 

  47. Lo CH, Tsung TT, Chen LC, Su CH, Lin HM (2005) Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SNASS). J Nanopart Res 7(2–3):313–320

    Article  Google Scholar 

  48. Zhu HT, Lin YS, Yin YS (2004) A novel one-step chemical method for preparation of copper nanofluids. J Colloid Interface Sci 277(1):100–103

    Article  Google Scholar 

  49. Bönnemann H, Botha SS, Bladergroen B, Linkov VM (2005) Monodisperse copper- and silver-nanocolloids suitable for heat-conductive fluids. Appl Organomet Chem 19(6):768–773

    Article  Google Scholar 

  50. Singh AK, Raykar VS (2006) Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties. Colloid Polym Sci 286(14-15):1667–1673

  51. Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M (2003) Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules. J Colloid Interface Sci 264(2):396–401

    Article  Google Scholar 

  52. Yu W, Xie H, Wang X, Wang X (2011) Highly efficient method for preparing homogeneous and stable colloids containing graphene oxide. Nanoscale Res Lett 6:47

    Google Scholar 

  53. Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012, Article ID 435873

  54. Zhu HT, Zhang CY, Tang YM, Wang JX (2007) Novel synthesis and thermal conductivity of CuO nanofluid. J Phys Chem C 111(4):1646–1650

    Article  Google Scholar 

  55. Chen Y, Wang X (2008) Novel phase-transfer preparation of monodisperse silver and gold nanoparticles at room temperature. Mater Lett 62(15):2215–2218

    Article  Google Scholar 

  56. Feng X, Ma H, Huang S et al (2006) Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports. J Phys Chem B 110(25):12311–12317

    Article  Google Scholar 

  57. Faulkner D, Khotan M, Shekarriz R (2003) Practical design of a 1,000 W/cm2 cooling system. In: Annual IEEE semiconductor thermal measurement and management symposium. Institute of Electrical and Electronics Engineers Inc., San Jose, CA, USA, pp 223–230

  58. Das SK, Putra N, Roetzel W (2003) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf 46(5)851–862

    Article  Google Scholar 

  59. Wen D, Ding Y (2005) Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J Nanopart Res 7(2):265–274

    Article  Google Scholar 

  60. Ramaswamy C, Joshi Y, Nakayama W, Johnson W (2003) Effects of varying geometrical parameters on boiling from micro fabricated enhanced structures. J Heat Transf 125:103

    Article  Google Scholar 

  61. Coursey J, Roh H, Kim J, Boudreaux P (2002) Graphite foam thermosyphon evaporator performance parametric investigation of the effects of working fluid, liquid level and chamber pressure. In: Proceedings of IMECE200 1

  62. Sathyamurthi V, Ahn H, Banerjee D, Lau S (2009) Subcooled pool boiling experiments on horizontal heaters coated with carbon nanotubes. J Heat Transf 131:071501

    Article  Google Scholar 

  63. Endo M et al (1993) The production and structure of pyrolytic carbon nanotubes. J Phys Chem Solid 54(12):1841–1848

    Article  Google Scholar 

  64. Ahn H, Sinha N, Zhang M, Banerjee D, Fang S, Baughman R (2006) Pool boiling experiments on multiwalled carbon nanotubes (MWCNT) forests. J Heat Transf 128:1335

    Article  Google Scholar 

  65. Ujereh S, Fisher T, Mudawar I et al (2007) Carbon nanotube arrays on nucleate pool boiling. Int J Heat Mass Transf 50(19–20):4023–4038

    Article  Google Scholar 

  66. Venkatachalapathy S et al (2013) Effect of surface modifications on the enhancement of critical heat flux in saturated pool boiling. In: International conference on advance research in mechanical aeronautical and civil Sep 7, 2013 Pattaya

  67. Huang C-K et al (2011) Boiling enhancement by TiO2 nanoparticle deposition. Int J Heat Mass Transf 54:4895–4903

    Article  Google Scholar 

  68. Song SL et al (2013) CHF enhancement of SiC nanofluid in pool boiling experiment. Exp Therm Fluid Sci (in press)

  69. Sharma Vivek I et al (2013) Experimental investigation of transient critical heat flux of water-based zinc–oxide nanofluids. Int J Heat Mass Transf 61:425–431

    Article  Google Scholar 

  70. Hsu C-C et al (2012) Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings. Int J Heat Mass Transf 55:3713–3719

    Article  Google Scholar 

  71. Duangthongsuk W et al (2013) Pool-boiling heat transfer characteristics of Al2O3–water nanofluids on a horizontal cylindrical heating surface. Curr Nanosci 9:56–60

    Google Scholar 

  72. Cheng L, Bandarra FEP, Thome JR (2008) J Nanosci Nanotechnol 8:3315

  73. Peterson GP, Li CH (2006) Recent patents on engineering nanofluid heat transfer technologies. Adv Heat Transf 39:275

  74. Wang XQ, Majumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46(1):1-19

  75. Das SK, Choi SUS, Patel H (2006) Heat transfer in nanofluids -a review. Heat Transf Eng 27(10):3-19

  76. Cheng L, Mewes D (2006) Review of two-phase flow boiling of mixtures in small and mini channels. Int J Multiph Flow 32(2):159-284

  77. Kathiravan R, Ravikumar (2011) Pool boiling characteristics of multi walled carbon nanotube (CNT) based nanofluids over a flat plate heater. Int J Heat Mass Transf 54(2011):1289-1296

    Article  Google Scholar 

  78. Hegde RN et al (2012) Flow visualization and study of critical heat flux enhancement in pool boiling with Al2O3-water nanofluids. Int J Therm Sci 16(2)445–453

  79. Lee JH et al (2012) Experimental study on the pool boiling CHF enhancement using magnetite-water nanofluids. Int J Heat Mass Transf 55:2656–2663

    Article  Google Scholar 

  80. Mourgues A et al (2013) Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid. Int J Heat Mass Transf 57:595–607

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdeep M. Kshirsagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kshirsagar, J.M., Shrivastava, R. Review of the influence of nanoparticles on thermal conductivity, nucleate pool boiling and critical heat flux. Heat Mass Transfer 51, 381–398 (2015). https://doi.org/10.1007/s00231-014-1412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1412-3

Keywords

Navigation