Skip to main content
Log in

The role of several heat transfer mechanisms on the enhancement of thermal conductivity in nanofluids

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A modelling of the thermal conductivity of nanofluids based on extended irreversible thermodynamics is proposed with emphasis on the role of several coupled heat transfer mechanisms: liquid interfacial layering between nanoparticles and base fluid, particles agglomeration and Brownian motion. The relative importance of each specific mechanism on the enhancement of the effective thermal conductivity is examined. It is shown that the size of the nanoparticles and the liquid boundary layer around the particles play a determining role. For nanoparticles close to molecular range, the Brownian effect is important. At nanoparticles of the order of 1–100 nm, both agglomeration and liquid layering are influent. Agglomeration becomes the most important mechanism at nanoparticle sizes of the order of 100 nm and higher. The theoretical considerations are illustrated by three case studies: suspensions of alumina rigid spherical nanoparticles in water, ethylene glycol and a 50/50w% water/ethylene glycol mixture, respectively, good agreement with experimental data is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marín E., Bedoya A., Alvarado S., Calderón A., Ivanov R., Gordillo-Delgado F.: An explanation for anomalous thermal conductivity behaviour in nanofluids as measured using the hot-wire technique. J. Phys. D: Appl. Phys. 47, 085501 (2014)

    Article  ADS  Google Scholar 

  2. Keblinski P., Phillpot S.R., Choi S.U.S., Eastman J.A.: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45, 855–863 (2002)

    Article  MATH  Google Scholar 

  3. Keblinski P., Eastman J.A., Cahill D.G.: Nanofluids for thermal transport. Mater. Today 8, 36–44 (2005)

    Article  Google Scholar 

  4. Wang X.-Q., Mujumdar A.S.: A review of nanofluids—Part I: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008)

    Google Scholar 

  5. Iranidokht V., Hamian S., Mohammadi N., Shafii M.B.: Thermal conductivity of mixed nanofluids under controlled pH conditions. Int. J. Thermal Sci. 74, 63–71 (2013)

    Article  Google Scholar 

  6. Bruggeman D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Annal. Phys. 24, 636–679 (1935)

    Article  ADS  Google Scholar 

  7. Maxwell J.C.: Treatise on Electricity and Magnetism. Clarendon, Oxford (1881)

    MATH  Google Scholar 

  8. Nan C.-W., Birringer R., Clarke D.R., Gleiter H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692 (1997)

    Article  ADS  Google Scholar 

  9. Lebon G., Machrafi H.: Thermal conductivity of tubular nanowire composites based on a thermodynamic model. Phys. E 71, 117–123 (2015)

    Article  Google Scholar 

  10. Ordonez-Miranda J., Yang R., Alvarado-Gil J.J.: On the thermal conductivity of particulate nanocomposites. Appl. Phys. Lett. 98, 233111 (2011)

    Article  ADS  Google Scholar 

  11. Behrang A., Grmela M., Dubois C., Turenne S., Lafleur P.G.: Influence of particle-matrix interface, temperature and agglomeration on heat conduction in dispersions. J. Appl. Phys. 114, 014305 (2013)

    Article  ADS  Google Scholar 

  12. Lebon G., Machrafi H., Grmela M.: An extended irreversible thermodynamic modelling of size-dependent thermal conductivity of spherical nanoparticles dispersed in homogeneous media. Proc. R. Soc. A 471, 20150144 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Xie H., Fujii M., Zhang X.: Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transf. 48, 2926–2932 (2005)

    Article  MATH  Google Scholar 

  14. Yu W., Choi S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. J. Nanopart. Res. 5, 167–171 (2003)

    Article  Google Scholar 

  15. Pasrija R., Srivastava S.: The interfacial layer effect on thermal conductivity of nano-colloidal dispersions. Int. J. Appl. Phys. Math. 4, 1–4 (2014)

    Article  Google Scholar 

  16. Kole M., Dey T.K.: Role of interfacial layer and clustering on the effective thermal conductivity of CuO–gear oil nanofluids. Exp. Thermal Fluid Sci. 35, 1490–1495 (2011)

    Article  Google Scholar 

  17. Chen H., Ding Y., Tan C.: Rheological behaviour of nanofluids. New J. of Phys. 9, 367–390 (2007)

    Article  ADS  Google Scholar 

  18. Kochetov R., Korobko A.V., Andritsch T., Morshuis P.H.F., Picken S.J., Smit J.J.: Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J. Phys. D: Appl. Phys. 44, 395401 (2011)

    Article  Google Scholar 

  19. Timofeeva E.V., Gavrilov A.N., McCloskey J.M., Tolmachev Y.V.: Thermal conductivity and particle agglomeration in alumina nano-fluids: experiment and theory. Phys. Rev. E 76, 061203 (2007)

    Article  ADS  Google Scholar 

  20. Anoop K.B., Kabelac S., Sundararajan T., Das S.K.: Rheological and flow characteristics of nanofluids: Influence of electroviscous effects and particle agglomeration. J. Appl. Phys. 106, 034909 (2009)

    Article  ADS  Google Scholar 

  21. Xiao B., Yang Y., Chen L.: Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry. Powder Technol. 239, 409–414 (2013)

    Article  Google Scholar 

  22. Azizian R., Doroodchi E., Moghtaderi B.: Effect of nanoconvection caused by Brownian motion on the enhancement of thermal conductivity in nanofluids. Ind. Eng. Chem. Res. 51, 1782–1789 (2012)

    Article  Google Scholar 

  23. Jang S.P., Choi S.U.S.: Role of Brownian motion in the enhanced thermal of nanofluids. Appl. Phys. Lett. 84, 4316–4318 (2004)

    Article  ADS  Google Scholar 

  24. Reissland J.A.: The Physics of Phonons. Wiley, London (1973)

    Google Scholar 

  25. Michaelides E.E.: Transport properties of nanofluids. A critical review. J. Non-Equilib. Thermodyn. 38, 1–79 (2013)

    Article  ADS  MATH  Google Scholar 

  26. Thang B.H., Khoi P.H., Minh P.N.: A modified model for thermal conductivity of carbon nanotube-nanofluids. Phys. Fluids 27, 032002 (2015)

    Article  ADS  Google Scholar 

  27. Mizzi S., Barber R.W., Emerson D.R., Reese J.M., Stefanov S.K.: A phenomenological and extended continuum approach for modelling non-equilibrium flows. Contin. Mech. Thermodyn. 19, 273–283 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Sisman A., Babac G.: Quantum size effects on classical thermosize effects. Contin. Mech. Thermodyn. 24, 339–346 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Alber, H.D., Hutter, K., Tsakmakis, Ch.: Nonconventional thermodynamics, indeterminate couple stress elasticity and heat conduction, Contin. Mech. Thermodyn. (2014). doi:10.1007/s00161-014-0406-1

  30. Jou D., Casas-Vàzquez J., Lebon G.: Extended Irreversible Thermodynamics. 4th edition. Springer, New York (2010)

    Book  MATH  Google Scholar 

  31. Lebon G., Jou D.: Early history of extended irreversible thermodynamics (1953–1983): An exploration beyond local equilibrium and classical transport theory. Eur. Phys. J. H 40, 205–240 (2014)

    Article  Google Scholar 

  32. Jou D., Casas-Vazquez J., Lebon G.: Extended irreversible thermodynamics, a brief introduction. Proc. Estonian Acad. Sci. 57, 118–128 (2008)

    Article  MATH  Google Scholar 

  33. Cimmelli V.A., Jou D., Ruggeri T., Van P.: Entropy principle and recent results in non-equilibrium theories. Entropy 16, 1756–1807 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Machrafi H., Lebon G.: Effective thermal conductivity of spherical particulate nanocomposites: Comparison with theoretical models, Monte Carlo simulations and experiments. Int. J. Nanosci. 13, 1450022 (2014)

    Article  Google Scholar 

  35. Das S.K., Nandy P., Thiesen P., Roetzel W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125, 567–575 (2003)

    Article  Google Scholar 

  36. Hondaraju S., Jin E.K., Lee S.J.: Direct simulation of thermal conductivity of nanofluids; The effect of temperature two-way coupling and coagulation of particles. Int. J. Heat Mass Transf. 53, 962 (2010)

    Article  Google Scholar 

  37. Prasher R., Bhattacharya P., Phelan P.E.: Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J. Heat Transf. 128, 588–595 (2006)

    Article  Google Scholar 

  38. Jang S.P., Choi S.U.S.: Effects of various parameters on nanofluid thermal conductivity. J. Heat Transf. 129, 617–623 (2007)

    Article  Google Scholar 

  39. de Groot S.R., Mazur P.: Non-Equilibrium Thermodynamics. North-Holland Publishing Company, Amsterdam (1962)

    MATH  Google Scholar 

  40. Spencer A.J.M, Rivlin R.S.: Further results in the theory of matrix polynomials. Arch. Ration. Mech. Anal. 4, 214 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jou D., Casas-Vazquez J., Lebon G., Grmela M.: A phenomenological scaling approach for heat tranfer in nano-systems. Appl. Math. Lett. 18, 963–967 (2005)

    Article  MATH  Google Scholar 

  42. Dreyer W., Struchtrup H.: Heat pulse experiments revisited. Contin. Mech. Therm. 5, 3–50 (1993)

    Article  MathSciNet  Google Scholar 

  43. Hess S.: On nonlocal constitutive relations, continued fraction expansion for the wave vector dependent diffusion coefficient. Z. Naturforsch. 32, 678–684 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  44. Hashimoto T., Fujimura M., Kawai H.: Domain-boundary structure of styrene-isoprene block co-polymer films cast from solutions. Macromolecules 13, 660–669 (1980)

    Google Scholar 

  45. Li Z.H., Gong Y.J., Pu M., Wu D., Sun Y.H., Wang J., Liu Y., Dong B.Z.: Determination of interfacial layer thickness of a pseudo two-phase system by extension of the Debye equation. J. Phys. D: Appl. Phys. 34, 2085–2088 (2001)

    Article  ADS  Google Scholar 

  46. Yu C.J., Richter A.G., Datta A., Durbin M.K., Dutta P.: Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study. Phys. B 283, 27–31 (2000)

    Article  ADS  Google Scholar 

  47. Xue L., Keblinski P., Phillpot S.R., Choi S.U.S., Eastman J.A.: Effect of liquid layering at the liquid-solid interface on thermal transport. Int. J. Heat Mass Transf. 47, 4277–4284 (2004)

    Article  MATH  Google Scholar 

  48. Murshed S.M.S., Leong K.C., Yang C.: A combined model for the effective thermal conductivity of nanofluids. Appl. Therm. Eng. 29, 2477–2483 (2009)

    Article  Google Scholar 

  49. Barnes H.A., Hutton J.F., Walters K.: An Introduction to Rheology. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  50. Goodwin J.W., Hughes R.W.: Rheology for Chemists—An Introduction. The Royal Society of Chemistry, Cambridge (2000)

    Google Scholar 

  51. Wang B.X., Zhou L.P., Peng X.F.: A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transf. 46, 2665–2672 (2003)

    Article  MATH  Google Scholar 

  52. Prasher R., Evans W., Meakin P., Fish J., Phelan P., Keblinski P.: Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 89, 143119 (2006)

    Article  ADS  MATH  Google Scholar 

  53. Hui P.M., Zhang X., Markworth A.J., Stroud D.: Thermal conductivity of graded composites: numerical simulations and an effective medium approximation. J. Mater. Sci. 34, 5497–5503 (1999)

    Article  ADS  Google Scholar 

  54. Prasher R., Bhattacharya P., Phelan P.E.: Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett. 94, 025901 (2005)

    Article  ADS  Google Scholar 

  55. Kaviany M.: Essentials of Heat Transfer. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  56. Jamal-Abadi M.T., Zamzamian A.H.: Optimization of thermal conductivity of Al2O3 nanofluid by using ANN and GRG methods. Int. J. Nanosci. Nanotechnol. 9, 177–184 (2013)

    Google Scholar 

  57. Xie H., Wang J., Xi T., Liu Y., Ai F., Wu Q.: Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 91, 4568 (2002)

    Article  ADS  Google Scholar 

  58. Witharana, S., Weliwata, J.A.: Suspended nanoparticles as a way to improve thermal energy transfer efficiency. ICIAFS Conf. (2012). doi:10.1109/ICIAFS.2012.6419922

  59. Beck M.P., Yuan Y., Warrier P., Teja A.S.: The effect of particle size on the thermal conductivity of alumina nanofluids. J. Nanopart. Res. 11, 1129–1136 (2009)

    Article  Google Scholar 

  60. Li C.H., Peterson G.P.: The effect of particle size on the effective thermal conductivity. J. Appl. Phys. 101, 044312 (2007)

    Article  ADS  Google Scholar 

  61. Lee S., Choi S.U.S., Li S., Eastman J.A.: Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 121, 280–289 (1999)

    Article  Google Scholar 

  62. Beck M.P., Yuan Y., Warrier P., Teja A.S.: The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures. J. Nanopart. Res. 12, 1469–1477 (2010)

    Article  Google Scholar 

  63. Wang X.W., Xu X.F., Choi S.U.S.: Thermal conductivity of nanoparticle-fluid. J. Thermophys. Heat Transf. 13, 474–480 (1999)

    Article  Google Scholar 

  64. Koo J., Kleinstreuer C.: A new thermal conductivity model for nanofluids. J. Nanopart. Res. 6, 577–588 (2004)

    Article  Google Scholar 

  65. Gupta A., Kumar R.: Role of Brownian motion on the thermal conductivity enhancement of nanofluids. Appl. Phys. Lett. 91, 223102 (2007)

    Article  ADS  Google Scholar 

  66. Das S.K., Choi S.U.S., Yu W., Pradeep T.: Nanofluids: Science and Technology. Wiley, New Jersey (2008)

    Google Scholar 

  67. Nie C., Marlow W., Hassan Y.A.: Discussion of proposed mechanism of thermal conductivity enhancement in nanofluids. Int. J. Heat Mass Transf. 51, 1342–1348 (2008)

    Article  MATH  Google Scholar 

  68. Shima P.D., Philip J., Raj B.: Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl. Phys. Lett. 94, 223101 (2009)

    Article  ADS  Google Scholar 

  69. Kleinstreuer C., Feng Y.: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Lett. 6, 229 (2011)

    Article  ADS  Google Scholar 

  70. Evans W., Fish J., Keblinski P.: Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl. Phys. Lett. 88, 093116 (2006)

    Article  ADS  Google Scholar 

  71. Fang K.C., Weng C.I., Ju S.P.: An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations. Nanotechnology 17, 3909–3914 (2006)

    Article  ADS  Google Scholar 

  72. Sridhara V., Satapathy L.N.: Al2O3-based nanofluids: a review. Nanoscale Lett. 6, 456 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Machrafi.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machrafi, H., Lebon, G. The role of several heat transfer mechanisms on the enhancement of thermal conductivity in nanofluids. Continuum Mech. Thermodyn. 28, 1461–1475 (2016). https://doi.org/10.1007/s00161-015-0488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0488-4

Keywords

Navigation