Skip to main content
Log in

Analysis of ultra-high birefringent fully-anisotropic photonic crystal fiber

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Highly birefringent photonic crystal fiber (PCF) is proposed and analyzed using full vectorial finite element method. The reported design has a central large core filled with nematic liquid crystal (NLC) which provides tunability with the external electric field and temperature. In addition, the full permittivity tensor of the NLC material is taken into account when we study the modal properties of the proposed PCF. The effects of the geometrical parameters, rotation angle of the director of the NLC, and temperature on the modal properties of the reported design are investigated. The suggested design offers high birefringence of 0.191 at the operating wavelength of 1.55 μm with NLC diameter of 3.4 μm with low losses of the two polarized modes. As the NLC diameter decreases to 1.0 μm, high birefringence of 0.08 is obtained with single mode NLC PCF design, which is significantly large birefringence to maintain polarization state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alkeskjold, T., Lægsgaard, J., Bjarklev, A., Hermann, D., Anawati, A., Broeng, J., Li, J., Wu, S.: All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt. Express 12, 5857–5871 (2004)

    Article  ADS  Google Scholar 

  • Birks, T.A., Knight, J.C., Russell, P.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  • Chen D., Shen, L.: Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss. IEEE Photon. Technol. Lett., 19, 185–187 (2007)

  • Chen, MY., Chang, H.C.: Finite-difference frequency-domain analysis of nematic liquid crystal optical waveguides in silicon V-grooves. CLEO/Pacific RIM’09, (2009)

  • Chen, M.Y., Hsu, S.M., Chang, H.C.: A finite-difference frequency-domain method for full-vectorial mode solutions of anisotropic optical waveguides with an arbitrary permittivity tensor. Opt. Express 17, 5965–5979 (2009)

    Article  ADS  Google Scholar 

  • Chigrinov, V., Prudnikova, E., Kozenkov, V., Kwok, H., Akiyama, H., Kawara, T., Takada, H., Takatsu, H.: Synthesis and properties of azo dye aligning layers for liquid crystal cells. Liq. Cryst. 29, 1321–1327 (2002)

  • Chychłowski, M.S., Ertman, S., Tefelska, M.M., Wolinski, T.R., Kruszelnicki, E.N., Yaroshchuk, O.: Photo-induced orientation of nematic liquid crystals in microcapillaries. Acta Phys. Pol. A 118, 1100–1103 (2010)

  • Chychlowski, M.S., Nowinowski-Kruszelnicki, E., Woliński, T.R.: Liquid crystal orientation control in photonic liquid crystal fibers. SPIE Proceedings, 7753, (2011)

  • Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, P.S.J., Roberts, P.J., Allan, D.C.: Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)

    Article  Google Scholar 

  • Gibson, B.C., Huntington, S.T., Rubanov, S., Olivero, P.: Exposure and characterization of nano-structured hole arrays in tapered photonic crystal fibers using a combined FIB/SEM technique. Opt. Express 13, 9023–9028 (2005)

    Article  ADS  Google Scholar 

  • Green, M., Madden, S.J.: Low loss nematic liquid crystal cored fiber waveguides. Appl. Opt. 28, 5202–5203 (1989)

    Article  ADS  Google Scholar 

  • Haakestad, M.W., Alkeskjold, T.T., Nielsen, M.D., Scolari, L., Riishede, J., Engan, H.E., Bjarklev, A.: Electrically tunable photonic bandgap guidance in a liquid–crystal-filled photonic crystal fiber. IEEE Photon. Technol. Lett. 17, 819–821 (2005)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A., Al-Begain, K., Abo el Maaty, M.I., Nasr, A.M.: Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber. IEEE J. Lightwave Technol. 27(21), 4754–4762 (2009)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A.: Analysis of polarization rotator based on nematic liquid crystal photonic crystal fiber. J. Lightwave Technol. 28, 806–815 (2010)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A.: Coupling characteristics of dual liquid crystal core soft glass photonic crystal fiber. IEEE J. Quantum Electron. 47, 1283–1290 (2011)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A., El-Mikati, H.A.: Highly nonlinear birefringent soft glass photonic crystal fiber with liquid crystal core. IEEE Photon. Technol. Lett. 23(20), 1478–1480 (2011)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A.: Ultra short silica liquid crystal photonic crystal fiber polarization rotator. Opt. Lett. 39(4), 1077–1080 (2014)

    Article  ADS  Google Scholar 

  • Hansen, T.P., Broeng, J., Libori, S.E.B., et al.: Highly birefringent index-guiding photonic crystal fibers”. IEEE Photon. Technol. Lett. 13, 588–590 (2001)

    Article  ADS  Google Scholar 

  • Hsu, S., Chang, H.: Characteristic investigation of 2D photonic crystals with full material anisotropy under out-of-plane propagation and liquid-crystal-filled photonic-band-gap-fiber applications using finite element methods. Opt. Express 16, 21355–21368 (2008)

  • Hu, C., Whinnery, J.R.: Losses of a nematic liquid-crystal optical waveguide. J. Opt. Soc. Am. 64, 1424–1432 (1974)

    Article  ADS  Google Scholar 

  • Hu, D.J.J., Lim, J.L., Cui, Y., Milenko, K., Wang, Y., Shum, P.P., Wolinski, T.: Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber. IEEE Photon. J. 4, 1248–1255 (2012)

  • Huan, Y.G., Xu, Y., Yariv, A.: Fabrication of functional microstructured optical fibers through selective filling technique. Appl. Phys. Lett. 85, 5182–5184 (2004)

    Article  ADS  Google Scholar 

  • Huang, C.: Solving the full anisotropic liquid crystal waveguides by using an iterative pseudospectral-based eigenvalue method. Opt. Express 19, 3363–3378 (2011)

    Article  ADS  Google Scholar 

  • Knight, J.C., Birks, T.A., Russell, P.S., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)

    Article  ADS  Google Scholar 

  • Li, J., Wu, S.T., Brugioni, S., Meucci, R., Faetti, S.: Infrared refractive indices of liquid crystals. J. Appl. Phys. 97, 073501-1–073501-5 (2005)

    ADS  Google Scholar 

  • Napierała, M., Nasiłowski, T., Pawlik, E., Berghmans, F., Wójcik, J., Thienpont, H.: Extremely large-mode-area photonic crystal fibre with low bending loss. Opt. Express 18, 15408–15418 (2010)

    Article  ADS  Google Scholar 

  • Obayya, S.S.A.: Computational photonics. Wiley, Lodon (2011)

    Google Scholar 

  • Pitilakis, A.K., Zografopoulos, D.C., Kriezis, E.E.: In-line polarization controller based on liquid-crystal photonic crystal fibers. IEEE J. Lightwave Technol. 29, 2560–2569 (2011)

  • Rajarajan, M., Obayya, S.S.A., Rahman, B.M.A., Grattan, K.T.V., El-Mikati, H.A.: Characterisation of low-loss waveguide bends with offset-optimisation for compact photonic integrated circuits. IEEE Proc. Optoelectron. 147(6), 382–388 (2000)

    Article  Google Scholar 

  • Ren, G., Shum, P., Hu, J., Yu, X., Gong, Y.: Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers. IEEE Photon. Technol. Lett. 20, 602–604 (2008)

    Article  ADS  Google Scholar 

  • Somasiri, N., Rahman, B.M.A., Obayya, S.S.A.: Fabrication tolerance study of a compact passive polarization rotator. IEEE J. Lightwave Technol. 20, 751–757 (2002)

    Article  ADS  Google Scholar 

  • Sharma, M., Borogohain, N., Konar, S.: Index guiding photonic crystal fibers with large birefringence and walk-off. IEEE J. Lightwave Technol. 31, 3339–3344 (2013)

    Article  ADS  Google Scholar 

  • Shi, F., Wu, Y., Li, M., Zhao, Y., Zhao, L.: Highly birefringent two-mode photonic crystal fibers with near-zero flattened dispersion. IEEE Photon. J. 3, 1181–1188 (2011)

    Article  Google Scholar 

  • Wang, Y.Y., Yang, M., Wang, D.N.: Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity. IEEE Photon. Technol. Lett. 23, 1520–1522 (2011)

    Article  ADS  Google Scholar 

  • Yiou, S., Delaye, P., Rouvie, A., Chinaud, J., Frey, R., Roosen, G., Viale, P., F’evrier, S., Roy, P., Auguste, J.L., Blondy, J.M.: Stimulated Raman scattering in an ethanol core microstructured optical fiber. Opt. Express 13, 4786–4790 (2005)

    Article  ADS  Google Scholar 

  • Zhang, L., Xu, S.: Edge-element analysis of anisotropic waveguides with full permittivity and permeability matrices. Int. J. Infrared Millimeter Waves 16(8), 1351–1360 (1995)

    Article  ADS  Google Scholar 

Download references

Ethical standard

The authors would like to ensure the objectivity and transparency in the submitted research paper. Additionally, the authors would like to ensure that accepted principles of ethical and professional conduct have been followed through the preparation of the proposed paper. Further, we would like to clarify that there is no sources of funding, and no potential conflicts of interest (financial or non-financial). Moreover, the submitter research does not involve human participants, or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. A. Obayya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, R.A., Hameed, M.F.O., El-Azab, J. et al. Analysis of ultra-high birefringent fully-anisotropic photonic crystal fiber. Opt Quant Electron 47, 2993–3007 (2015). https://doi.org/10.1007/s11082-015-0186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0186-2

Keywords

Navigation