Skip to main content
Log in

Photoelectron Energy Loss in Al(002) Revisited: Retrieval of the Single Plasmon Loss Energy Distribution by a Fourier Transform Method

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A Fourier transform (FT) algorithm is proposed to retrieve the energy loss function (ELF) of solid surfaces from experimental X-ray photoelectron spectra. The intensity measured over a broad energy range towards lower kinetic energies results from convolution of four spectral distributions: photoemission line shape, multiple plasmon loss probability, X-ray source line structure and Gaussian broadening of the photoelectron analyzer. The FT of the measured XPS spectrum, including the zero-loss peak and all inelastic scattering mechanisms, being a mathematical function of the respective FT of X-ray source, photoemission line shape, multiple plasmon loss function, and Gaussian broadening of the photoelectron analyzer, the proposed algorithm gives straightforward access to the bulk ELF and effective dielectric function of the solid, assuming identical ELF for intrinsic and extrinsic plasmon excitations. This method is applied to aluminum single crystal Al(002) where the photoemission line shape has been computed accurately beyond the Doniach–Sunjic approximation using the Mahan–Wertheim–Citrin approach which takes into account the density of states near the Fermi level; the only adjustable parameters are the singularity index and the broadening energy Г (inverse hole lifetime). After correction for surface plasmon excitations, the q-averaged bulk loss function, <Im[− 1 / ε(E, q)]> q , of Al(002) differs from the optical value Im[− 1 / ε(E, q = 0)] and is well described by the Lindhard–Mermin dispersion relation. A quality criterion of the inversion algorithm is given by the capability of observing weak interband transitions close to the zero-loss peak, namely at 0.65 and 1.65 eV in ε(E, q) as found in optical spectra and ab initio calculations of aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Briggs, M.P. Seah, Practical Surface Analysis, Vol. 1, Auger and X-ray Photoelectron Spectroscopy, second edn., John Wiley and Sons, (1990)

  2. J. Daniels, C.V. Festenberg, H. Raether, K. Zeppenfeld, Springer Tracts in Modern Physics Vol. 54, Springer, Berlin, 1970, p. 77, Optical constants of solids by electron spectroscopy

  3. G.K. Wertheim, P.H. Citrin, Photoemission in Solids I (Springer, Berlin, 1978), pp. 197–236

    Book  Google Scholar 

  4. P. Schattschneider, Fundamentals of Inelastic Electron Scattering (Springer, New York, 1986)

    Book  Google Scholar 

  5. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications. Springer Series in Solid-State Sciences vol. 82, Springer, Berlin, (1995)

  6. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons, Springer Tracts in Modern Physics Vol. 88 (Springer, Berlin, 1997)

    Google Scholar 

  7. S. Tougaard, I. Chorkendorff, Differential inelastic electron scattering cross sections from experimental reflection electron-energy-loss spectra: application to background removal in electron spectroscopy. Phys. Rev. B 35, 6570–6577 (1987). https://doi.org/10.1103/PhysRevB.35.6570

    Article  ADS  Google Scholar 

  8. A.C. Simonsen, F. Yubero, S. Tougaard, Quantitative model of electron energy loss in XPS. Phys. Rev. B 56, 1612–1619 (1997). https://doi.org/10.1103/PhysRevB.56.1612

    Article  ADS  Google Scholar 

  9. N. Pauly, F. Yubero, S. Tougaard, Quantitative analysis of satellite structures in XPS spectra of gold and silver. Appl. Surface Sci. 383, 317–323 (2016). https://doi.org/10.1016/j.apsusc.2016.03.185

    Article  ADS  Google Scholar 

  10. W.S.M. Werner, Electron transport in solids for quantitative surface analysis. Surf. Interface Anal. 31, 141–176 (2001). https://doi.org/10.1002/sia.973

    Article  Google Scholar 

  11. R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum, New York, 1986)

    Google Scholar 

  12. W.J. Pardee, G.D. Mahan, D.E. Eastman, R.A. Pollak, L. Ley, F.R. McFeely, S.P. Kowalczyk, D.A. Shirley, Analysis of surface- and bulk-plasmon contributions to x-ray photoemission spectra. Phys. Rev. B 11, 3614–3616 (1975). https://doi.org/10.1103/PhysRevB.11.3614

    Article  ADS  Google Scholar 

  13. T.J. Baird, C.S. Fadley, S.M. Goldberg, P.J. Feibelman, M. Sunjic, The angular dependence of plasmon loss features in XPS spectra from polycrystalline aluminum: clean surfaces and effects of oxygen adsorption. Surf. Sci. 72, 495–512 (1978). https://doi.org/10.1016/0039-6028(78)90366-7

    Article  ADS  Google Scholar 

  14. C. Biswas, A.K. Shukla, S. Banik, V.K. Ahire, S.R. Barman, Plasmons in core-level photoemission spectra of Al(111). Phys. Rev. B 67, 165416 (2003). https://doi.org/10.1103/PhysRevB.67.165416

    Article  ADS  Google Scholar 

  15. M. Borg, M. Birgersson, M. Smedh, A. Mikkelsen, D.L. Adams, R. Nyholm, C.O. Almbladh, J.N. Andersen, Experimental and theoretical surface core-level shifts of aluminum (100) and (111). Phys. Rev. B 69, 235418 (2004). https://doi.org/10.1103/PhysRevB.69.235418

    Article  ADS  Google Scholar 

  16. D. David, C. Godet, H. Sabbah, S. Ababou-Girard, F. Solal, V. Chu, J.P. Conde, Derivation of the near-surface dielectric function of amorphous silicon from photoelectron loss spectra. J. Non-Cryst. Solids 358, 2019–2022 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.01.026

    Article  ADS  Google Scholar 

  17. N. Beatham, A.F. Orchard, The application of a Fourier transform technique to the problem of deconvolution in photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 9, 129–148 (1976). https://doi.org/10.1016/0368-2048(76)81024-9

    Article  Google Scholar 

  18. P. Nozières, C.T. de Dominicis, Singularities in the X-ray absorption and emission of metals. III. One-body theory exact solution. Phys. Rev. 178, 1097–1107 (1969). https://doi.org/10.1103/PhysRev.178.1097

    Article  ADS  Google Scholar 

  19. G.D. Mahan, Collective excitations in x-ray spectra of metals. Phys. Rev. B 11, 4814–4824 (1975). https://doi.org/10.1103/PhysRevB.11.4814

    Article  ADS  Google Scholar 

  20. S. Doniach, M. Sunjic, Collective excitations in x-ray spectra of metals. J. Phys. C 3, 285–291 (1970). https://doi.org/10.1088/0022-3719/3/2/010

    Article  ADS  Google Scholar 

  21. H. Shinotsuka, T. Uwatoko, T. Konishi, T. Fujikawa, Theoretical study of plasmon loss peaks in core-level photoemission spectra: energy and angular dependence. J. Surf. Anal. 14, 332 (2008)

    Google Scholar 

  22. T. Fujikawa, M. Kazama, H. Shinotsuka, Theoretical study of plasmon losses in core-level photoemission spectra. e-J. Surf. Sci. Nanotech. 6, 263–268 (2008). https://doi.org/10.1380/ejssnt.2008.263

    Article  Google Scholar 

  23. I.P. Batra, L. Kleinman, Chemisorption of oxygen on aluminum surfaces. J. Electron Spectrosc. Relat. Phenom. 33, 175–241 (1984). https://doi.org/10.1016/0368-2048(84)80020-1

    Article  Google Scholar 

  24. W. Theis, K. Horn, Temperature-dependent line broadening in core-level photoemission spectra from aluminum. Phys. Rev. B 47, 16060–16063 (1993). https://doi.org/10.1103/PhysRevB.47.16060

    Article  ADS  Google Scholar 

  25. M.O. Krause, J.G. Ferreira, K X-ray emission spectra of Mg and Al. J. Phys. B 8, 12 (1975). https://doi.org/10.1088/0022-3700/8/12/013/

    Article  Google Scholar 

  26. C. Klauber, Magnesium Kα X-ray line structure revisited. Appl. Surface Sci. 70/71, 35–39 (1993). https://doi.org/10.1016/0169-4332(93)90393-P

    Article  ADS  Google Scholar 

  27. C.N. Berglund, W.E. Spicer, Photoemission studies of copper and silver: theory. Phys. Rev. 136(A), 1030–A1044 (1964). https://doi.org/10.1103/PhysRev.136.A1030

    Article  ADS  Google Scholar 

  28. P. Steiner, H. Höchst, S. Hüfner, Analysis of the plasmon structure in XPS experiments of simple metals. Phys. Lett. A 61, 410–412 (1977). https://doi.org/10.1016/0375-9601(77)90350-4

    Article  ADS  Google Scholar 

  29. P. Steiner, H. Höchst, S. Hüfner, XPS investigation of simple metals I. Core Level Spectra. Z. Phys. B 30, 129–143 (1978). https://doi.org/10.1007/BF01320978

    Article  ADS  Google Scholar 

  30. W. Schattke, M.A. Van Hove, Solid-State Photoemission and Related Methods (Wiley-VCH, Weinheim, 2003)

    Book  Google Scholar 

  31. J.J. Hopfield, D.G. Thomas, Theoretical and experimental effects of spatial dispersion on the optical properties of crystals. Phys. Rev. 132, 563–572 (1963). https://doi.org/10.1103/PhysRev.132.563

    Article  ADS  Google Scholar 

  32. X. Gonze, First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys. Rev. B 55, 10337–10354 (1997). https://doi.org/10.1103/PhysRevB.55.10337

    Article  ADS  Google Scholar 

  33. X. Gonze, C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997). https://doi.org/10.1103/PhysRevB.55.10355

    Article  ADS  Google Scholar 

  34. X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.Y. Raty, D.C. Allan, First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002). https://doi.org/10.1016/S0927-0256(02)00325-7

    Article  Google Scholar 

  35. X. Gonze, G.M. Rignanese, M. Verstraete, et al., A brief introduction to the ABINIT software package. Z. Kristallogr. 220, 558 (2005). https://doi.org/10.1524/zkri.220.5.558.65066

    Google Scholar 

  36. X. Gonze, B. Amadon, P.M. Anglade, J.M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger, ABINIT: first-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180, 2582–2615 (2009). https://doi.org/10.1016/j.cpc.2009.07.007

    Article  ADS  Google Scholar 

  37. X. Gonze, F. Jollet, F. Abreu-Araujo, et al., Recent developments in the ABINIT software package. Comput. Phys. Commun. 205, 106–131 (2016). https://doi.org/10.1016/j.cpc.2016.04.003

    Article  ADS  Google Scholar 

  38. M. Ernzerhof, G.E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5036 (1999). https://doi.org/10.1063/1.478401

    Article  ADS  Google Scholar 

  39. C. Hartwigsen, S. Goedecker, J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998). https://doi.org/10.1103/PhysRevB.58.3641

    Article  ADS  Google Scholar 

  40. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  41. D. Pines, D. Bohm, A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 85, 338–353 (1952). https://doi.org/10.1103/PhysRev.85.338

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. R.H. Ritchie, A. Howie, Electron excitation and the optical potential in electron microscopy. Phil. Mag. 36, 463–481 (1977). https://doi.org/10.1080/14786437708244948

    Article  ADS  Google Scholar 

  43. J. Lindhard, On the properties of a gas of charged particles, Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 28 (1954)

  44. L. Calliari, S. Fanchenko, Reflection electron energy loss spectroscopy: role of the Bethe–Born factor. Surf. Interf. Anal. 44, 1104–1109 (2012). https://doi.org/10.1002/sia.4827

    Article  Google Scholar 

  45. D. David, C. Godet, Derivation of dielectric function and inelastic mean free path from photoelectron energy-loss spectra of amorphous carbon surfaces. Appl. Surface Sci. 387, 1125–1139 (2016). https://doi.org/10.1016/j.apsusc.2016.06.044

    Article  ADS  Google Scholar 

  46. N. Pauly, S. Tougaard, Surface excitation parameter for 12 semiconductors and determination of a general predictive formula. Surf. Interf. Anal. 41, 735–740 (2009). https://doi.org/10.1002/sia.3081

    Article  Google Scholar 

  47. W.S.M. Werner, W. Smekal, C. Tomastik, H. Störi, Surface excitation probability of medium energy electrons in metals and semiconductors. Surf. Sci. 486, L461–L466 (2001)

    Article  ADS  Google Scholar 

  48. N. Pauly, S. Tougaard, Determination of the effective surface region and of the Begrenzungs effect. Surf. Sci. 603, 2158–2162 (2009). https://doi.org/10.1016/j.susc.2009.04.023

    Article  ADS  Google Scholar 

  49. F. Yubero, S. Tougaard, Quantification of plasmon excitations in core-level photoemission. Phys. Rev. B 71, 045414 (2005). https://doi.org/10.1103/PhysRevB.71.045414

    Article  ADS  Google Scholar 

  50. T. Nagatomi, S. Tanuma, Surface excitations in surface electron spectroscopies studied by reflection electron energy-loss spectroscopy and elastic peak electron spectroscopy. Anal. Sci. 26, 165–176 (2010). https://doi.org/10.2116/analsci.26.165

    Article  Google Scholar 

  51. E.D. Palik, Handbook of Optical Constants of Solids II (Academic, New York, 1991)

    Google Scholar 

  52. A.D. Rakic, Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl. Opt. 34, 4755–4767 (1995)

    Article  ADS  Google Scholar 

  53. S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron inelastic mean free paths. VIII. Data for 15 elemental solids over the 50-2000 eV range. Surf. Interf. Anal. 36, 1–14 (2004). https://doi.org/10.1002/sia.740210302

    Article  Google Scholar 

  54. N.D. Mermin, Lindhard dielectric function in the relaxation-time approximation. Phys. Rev. B 1, 2362–2363 (1970). https://doi.org/10.1103/PhysRevB.1.2362

    Article  ADS  Google Scholar 

  55. P.C. Gibbons, S.E. Schnatterly, J.J. Ritsko, J.R. Fields, Line shape of the plasma resonance in simple metals. Phys. Rev. B 13, 2451–2460 (1976). https://doi.org/10.1103/PhysRevB.13.2451

    Article  ADS  Google Scholar 

  56. D.Y. Smith, B. Segall, Intraband and interband processes in the infrared spectrum of metallic aluminum. Phys. Rev. B 34, 5194–5198 (1986). https://doi.org/10.1103/PhysRevB.34.5191

    ADS  Google Scholar 

  57. R.L. Benbow, D.W. Lynch, Optical absorption in Al and dilute alloys of Mg and Li in Al at 4.2 K. Phys. Rev. B 12, 5615–5621 (1975). https://doi.org/10.1103/PhysRevB.12.5615

    Article  ADS  Google Scholar 

  58. S.J. Youn, B.I. Min, T.H. Rho, K.S. Kim, Nested Fermi surfaces, optical peaks, and laser-induced structural transition in Al. Phys. Rev. B 69, 033101 (2004). https://doi.org/10.1103/PhysRevB.69.033101

    Article  ADS  Google Scholar 

  59. K.H. Lee, K.J. Chang, First-principles study of the optical properties and the dielectric response of Al. Phys. Rev. B 49, 2362–2367 (1994). https://doi.org/10.1103/PhysRevB.49.2362

    Article  ADS  Google Scholar 

  60. T. Herrmann, M. Gensch, M.J.G. Lee, A.I. Shkrebtii, N. Esser, W. Richter, P. Hofmann, Optical reflectance anisotropy of Al(110): experiment and ab initio calculation. Phys. Rev. B 69, 165406 (2004). https://doi.org/10.1103/PhysRevB.69.165406

    Article  ADS  Google Scholar 

  61. N. Moslemzadeh, G. Beamson, P. Tsakiropoulos, J.F. Watts, S.R. Haines, P. Weightman, The 1s XPS spectra of the 3d transition metals from scandium to cobalt. J. Electron Spectrosc. Relat. Phenom. 152, 129–133 (2006). https://doi.org/10.1016/j.elspec.2006.03.011

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank A. Le Pottier and B. Lépine for the technical help in the Al sample preparation, along with S. di Matteo and D. Sébilleau (IPR, Rennes University) for the valuable discussions on photoemission theory and Prof. A. Ferreira da Silva (UFBa, Brazil) for his steady support.

Funding

C.G. is grateful to the CNPq agency (Brazil) for a visiting researcher grant (PVE 400691/2012-4) from the Ciência Sem Fronteiras programme. D.D. is grateful to the CAPES agency (Brazil) for a senior researcher grant (BEX 0281/15-8) and University of Rennes 1 for an invited professor position. V.S. is grateful to the CAPES agency (Brazil) and Rennes Métropole for PhD grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denis David or Christian Godet.

Electronic supplementary material

ESM 1

(DOC 348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, V.M.d., David, D., de Almeida, J.S. et al. Photoelectron Energy Loss in Al(002) Revisited: Retrieval of the Single Plasmon Loss Energy Distribution by a Fourier Transform Method. Braz J Phys 48, 215–226 (2018). https://doi.org/10.1007/s13538-018-0566-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0566-8

Keywords

Navigation