Skip to main content
Log in

Bioeffects of Zn and Cu Nanoparticles in Soil Systems

  • Original article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective: Nanoparticles have ecotoxicological pote-n tial into the environment. The purpose of this paper is a comparative assessment of the effect of Zn and Cu nanoparticles on Eisenia fetida and the activity of soil exo enzymes under the conditions of a model experiment.

Methods: Morpho-functional indices of E. fetida were studied when 50, 100, 200 and 400 mg/kg of soil was applied to the soil. Calculation of bioaccumulation, the degree of absorption and rate of accumulation of zinc and copper in the body of E. fetida was determined. Also, the activity of soil enzymes was investigated. In the experiment, was using metal nanoparticles Zn and Cu were used in concentrations of 0, 50, 100, 200 and 400 mg/kg in natural soil. Was the study of the effects of NPs, copper and zinc on parameters E. fetida and the level of the soil exoenzymes were carried out.

Results: The weight of the earthworm increased with soil contamination of CuNPs and decreased against the background of the introduction of ZnNPs. The indicators of the activity system of the enzymes earthworms were sensitive to the effects of metal nanopar-ticles. Soil enzymes showed selective sensitivity to the introduction of nanoparticles. Suppression of urease was observed when the soil was contaminated with CuNPs, and catalase - ZnNPs in a dose of more than 50 mg/kg. Invertase showed sensitivity at contamination with metals at a dose of 200 mg/kg and more.

Conclusion: Thus, the entry into the environment and the further deposition of nanoparticles Zn and Cu in the soil will lead to the suppression of the vital activity of the beneficiary soil animals and the activity of soil enzymes involved in cycle C and N. This is a phenomenon is a special kind of ecological risks for the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hubbs, A. et al. Nanotoxicology - a pathologists perspective. Toxicol. Pathol.39, 301–324 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Terekhova, V. A. & Gladkova, M. M. Engineering nano-materials in soil: the problems of assessing their impact on living organisms. Pedology1, 82–90 (2014). (In Russian)

    Google Scholar 

  3. Simonin, M. et al. Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J. Hazard. Mater. 283, 529–535 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Dror, I. et al. Abiotic soil changes induced by engineered nanomaterials: A critical review. J. Contam. Hydrol.181, 3–16. (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Tong, Z. H. et al. Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co-introduction effects. Sci. Rep.6, 28069 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salehi, H. et al. Morphological, proteomic and metabo-lomic insight into the effect of cerium dioxide nanopar-ticles to Phaseolus vulgaris L. under soil or foliar application. Sci. Total Environ. 616-617, 1540–1551 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Pietrzak, K. & Gutarowska, B. Influence of the silver nanoparticles on microbial community in different environments. Acta Biochim. Polonica62, 721–724 (2015).

    Article  CAS  Google Scholar 

  8. Chunjaturas, W. et al. Shift of bacterial community structure in two Thai soil series affected by silver nanoparti-cles using ARISA. World J. Microbiol. Biotechnol.62, 2119–2124 (2014).

    Article  CAS  Google Scholar 

  9. Read, D. S. et al. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-Zn with soil bacterial communities. Environ. Sci. Pollut. Res.23, 4120–4128(2016).

    Article  CAS  Google Scholar 

  10. Shah, V. et al. Impact of еngineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ. Sci. Pollut. Res. 22, 13710–13723 (2015).

    Article  CAS  Google Scholar 

  11. Shah, V. et al. Fate and impact of zero-valent copper nanoparticles on geographically-distinct soils. Sci. The Total. Environ.573, 661–670 (2016).

    Article  CAS  Google Scholar 

  12. Scott-Fordsmand, J. et al. The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. Ecotoxicol. Environ. Saf.71, 616–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Wallwork, J. A. in Earthworm Biology (Edward Arnold, London, 1983).

    Google Scholar 

  14. Vijver, M. G. et al. Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biol. Biochem. 5, 125–132 (2003).

    Article  Google Scholar 

  15. Morgan, J. E. & Morgan, A. J. The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting Earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxico-logical testing. Appl. Soil Ecol.13, 9–20 (1999).

    Article  Google Scholar 

  16. Yirsaw, D. et al. Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types Biruck. Environ. Sci. Pollut. Res. 23, 9822–9831 (2016).

    Article  CAS  Google Scholar 

  17. Shin, Y. et al. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere88, 524–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Micuţi, M. et al. On the enzymatic indicators for monitoring soil quality. Sci. Bull F. Biotechnol.21, 223–226 (2017).

    Google Scholar 

  19. Žaltauskaitė, J. & Sodienė, I. Effects of cadmium and lead on the life-cycle parameters of juvenile earthworm Eisenia fetida. Ecotoxicol. Environ. Saf.103, 9–16 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Labrot, F. et al. In vitro and in vivo studies of potential biomarkers of lead and uranium contamination: lipid peroxidation, acetylcholinesterase, catalase and glutathi-one peroxidase activities in three non-mammalian species. Biomarkers1, 21–28 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Ville, P. et al. Immuno-modulator effects of carbaryl and 2,4D in the earthworm Eisenia fetida andrei. Arch. Environ. Contam. Toxicol.32, 291–297 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Labrot, F. et al. Acute toxicity, toxicokinetics, and tissue target of lead and uranium in the clam Corbicula flu-minea and the worm Eisenia fetida: comparison with the fish Brachydanio rerio. Arch. Environ. Contam. Toxicol.36, 167–178 (1999). https://doi.org/10.1007/s002449900457.

    Article  CAS  PubMed  Google Scholar 

  23. Stenersen, J. & Oien, N. Glutathione-S-transferase in earthworms (Lumbricidae). Substrate specificity, tissue and species distribution and molecular weight. Comp. Biochem. Phys. 69, 243–252 (1981).

    Article  CAS  Google Scholar 

  24. Dittbrenner, N. et al. Sensitivity of Eisenia fetida in comparison to Aporrectodea caliginosa and Lumbricus terrestris after imidacloprid exposure. Body mass change and histopathology. J. Soils Sediments6, 1000 (2011).

    Article  CAS  Google Scholar 

  25. Ivask, A. et al. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicol. 8, 57–71 (2014).

    Article  CAS  Google Scholar 

  26. Gil, D. et al. Antioxidant Activity of SOD and Catalase Conjugated with Nanocrystalline Ceria. Bioengineering (Basel.)4, E18 (2017).

    Article  CAS  Google Scholar 

  27. Lebedev, S. V. et al. The trophometabolic potential of Eisenia fetida Savigny, 1826 (Oligochata, Lumbricidae), due to the presence of copper nanoparticles and oxide in the soil. Povolzhskiy J. Ecol.2, 147–156 (2017).

    Google Scholar 

  28. Conder, J. M. & Lanno, R. P. Evaluation of surrogate measures of cadmium, lead, and zinc bioavailability to Eisenia fetida. Chemosphere41, 1659–1668 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Sun, W. et al. Effect of monosultap on protein content. SOD and AChE activity of Eisenia fetida under two different temperatures. J. Agro-Environ. Sci.26, 1816–1821 (2007). (In Chinese)

    CAS  Google Scholar 

  30. Unrine, J. M. et al. Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ. Sci. Technol.44, 8308–8313 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Novo, M. et al. Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida. Environ. Pollut. 205, 385–393 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Duke, S. et al. Hormesis: Is it an important factor in Herbicide use and Allelopathy? Outlooks on Pest Management17, 29–33 (2006).

    Google Scholar 

  33. Garcia-Velasco, N. et al. Uptake route and resulting tox-icity of silver nanoparticles in Eisenia fetida earthworm exposed through Standard OECD Tests. Ecotoxicol. 25, 1543–1555 (2016).

    Article  CAS  Google Scholar 

  34. Jin, L. et al. Single-walled carbon nanotubes alter soil microbial community composition. Sci. Total Environ. 466-467, 533–538 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. McGee, C. F. et al. Concentration-dependent responses of soil bacterial, fungal and nitrifying communities to silver nano and micron particles. Environ. Sci. Pollut. Res.25, 18693–18704 (2018).

    Article  CAS  Google Scholar 

  36. Carbone, S. et al. Bioavailability and biological effect of engineered silver nanoparticles in a forest soil. J. Hazard. Mater. 280, 89–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Wise, K. & Brasuel, M. The current state of engineered nanomaterials in consumer goods and waste streams: the need to develop nanoproperty-quantifiable sensors for monitoring engineered nanomaterials. Nanotechnol. Sci. Appl.4, 73–86 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tabatabai, M. A. & Bremner, J. M. Assay of urease activity in soils. Soil Biol. Biochem. 4, 4479–487 (1972).

    Article  Google Scholar 

  39. George, F. Recycling Organic Waste for Enhancing Soil Urease and Invertase Activity. Int. J. Waste Resources6, 2252–5211 (2016).

    Google Scholar 

  40. Asadishad, B. et al. Amendment of Agricultural Soil with Metal Nanoparticles: Effects on Soil Enzyme Activity and Microbial Community Composition. Environ. Sci. Technol.52, 1908–1918 (2016).

    Article  CAS  Google Scholar 

  41. Calder, A. J. et al. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci. Total Environ. 429, 215–222 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Bundschuh, M. et al. Nanoparticles in the environment: where do we come from, where do we go to? Environ. Sci. Eur. 30, 6 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. OECD Guideline for Testing of Chemicals. Proposal for a New Test Guideline. Bioaccumulation in Terrestrial Oligochaetes. ENV/JM/TG (2010) Organization for Economic Cooperation and Development, Paris.

    Google Scholar 

  44. Li, M. et al. Comparative effects of Cd and Pb on biochemical response and DNA damage in the earthworm Eisenia fetida (Annelida, Oligochaeta). Chemosphere74, 621–625 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Buege, J. A. & Aust, S. D. Microsomal lipid peroxidation. Methods in Enzymology52, 302–310 (1978).

    Article  CAS  PubMed  Google Scholar 

  46. Claiborne, A. Catalase activity. In: Handbook of methods for oxygen research (eds Greenwald, R.A.) 283–284 (CRC Press, Boca Raton, 1985).

    Google Scholar 

  47. Cortet, J. et al. The use of invertebrate soil fauna in monitoring pollutant. Eur. J. Soil Biol. 35, 115–134 (1999).

    Article  CAS  Google Scholar 

  48. Zhang, L. et al. The sources and accumulation rate of sedimentary organic matter in the Pearl River Estuary and adjacent coastal area, Southern China. Estuarine, Coastal and Shelf Science2, 190–196 (2009).

    Article  CAS  Google Scholar 

  49. Zhang, B. et al. Uptake, bioaccumulation, and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its reduced metabolites (MNX and TNX) by the earthworm (Eisenia fetida). Chemosphere76, 76–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Khaziev, F. H. Methods of soil enzymology. (Nauka, Moscow, 1990)

    Google Scholar 

  51. Kazeev, K. S., Kolesnikov, S. I. & Valkov, V. F. in Biologic diagnostics and indication of soils: methodology and methods of researches (Rostov University Press, Rostov on Don, 2003).

    Google Scholar 

  52. Kaurichev, I. S. in Workshop on Soil Science (Nauka, Moscow, 1980).

    Google Scholar 

Download references

Acknowledgments

The study was carried out with the financial support on research work for 2019-2020 at the Federal Research Center for Biological Systems and Agrotechnologies (No 0761-2019-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Gavrish.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Conflict of Interest

Galaktionova L. declares that she has no conflicts of interest. Gavrish I. declares that she has no conflicts of interest. Lebedev S. declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galaktionova, L., Gavrish, I. & Lebedev, S. Bioeffects of Zn and Cu Nanoparticles in Soil Systems. Toxicol. Environ. Health Sci. 11, 259–270 (2019). https://doi.org/10.1007/s13530-019-0413-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-019-0413-5

Keywords

Navigation