Skip to main content

Advertisement

Log in

tRNA-derived fragments: mechanism of gene regulation and clinical application in lung cancer

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Lung cancer, being the most widespread and lethal form of cancer globally, has a high incidence and mortality rate primarily attributed to challenges associated with early detection, extensive metastasis, and frequent recurrence. In the context of lung cancer development, noncoding RNA molecules have a crucial role in governing gene expression and protein synthesis. Specifically, tRNA-derived fragments (tRFs), a subset of noncoding RNAs, exert significant biological influences on cancer progression, encompassing transcription and translation processes as well as epigenetic regulation. This article primarily examines the mechanisms by which tRFs modulate gene expression and contribute to tumorigenesis in lung cancer. Furthermore, we provide a comprehensive overview of the current bioinformatics analysis of tRFs in lung cancer, with the objective of offering a systematic and efficient approach for studying the expression profiling, functional enrichment, and molecular mechanisms of tRFs in this disease. Finally, we discuss the clinical significance and potential avenues for future research on tRFs in lung cancer. This paper presents a comprehensive systematic review of the existing research findings on tRFs in lung cancer, aiming to offer improved biomarkers and drug targets for clinical management of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

ψ:

pseudouracil

3’-UTR:

3’-untranslated region

AGO:

Argonaute

ALKBH3:

AlkB homologue 3

ANG:

Angiogenin

AKT:

Protein kinase B

AURKA:

Aurora kinase A

BCL2L11:

B-cell lymphoma 2-like 11

CELF6:

CUGBP Elav-Like Family Member 6

ceRNA:

Competitive endogenous RNA

circRNAs:

Circular RNAs

D:

Dihydrouracil

EGFR-TKIs:

Epidermal growth factor receptor tyrosine kinase inhib-itors

ELK4:

ETS-like transcription factor 4

EMT:

Epithelial-mesenchymal transition

GADD45G:

DNA damage 45G

GEPIA:

Gene Expression Profiling Interactive Analysis

GEO:

Gene Expression Omnibus

Gm:

2’-O-methylguanosine

GO:

Gene Ontology

GSEA:

Gene set enrichment analysis

H3K27ac:

H3-lysine-27-acetylation

H3K4me1:

H3-lysine 4-monomethylation

HSPB1:

Small heat shock protein-1

i6A:

N6-isopentenyl adenosine

IGF1R:

Insulin-like growth factor 1 receptor

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LARS1:

Leucine-tRNA synthetase

lncRNAs:

Long noncoding RNAs

LUAD:

Lung adenocarcinoma

LUSC:

lung squamous cell carcinoma

MED29:

Mediator complex subunit 29

miRNAs:

MicroRNAs

Mthfd1l:

Methylenetetra-hydrofolate dehydrogenase 1 like

ncRNAs:

Noncoding RNAs

NSun2:

NOP2/Sun RNA methyltransferase 2

NSCLC:

Non-small cell lung cancer

Pafah1b1:

Platelet-activating factor acetylhydrolase 1 beta 1

PIWIL2:

Piwi-like protein 2

RBPs:

RNA-binding proteins

RIP:

RNA immunoprecipitation

RISC:

RNA-induced silencing complex

RNP:

Ribonucleoprotein

RUNX1:

Runt-related transcription factor 1

SCLC:

Small cell lung cancer

SPRY4:

Sprouty 4

TCGA:

The Cancer Genome Atlas

TEM:

Transmission electron microscopy

TFs:

Transcription factors

tiRNAs:

tRNA semimolecules

tRFs:

tRNA-derived fragments

TRMT2A:

tRNA methyltransferase 2 homologue A

YTHDF1:

YTH N6-methyladenosine RNA binding protein 1

References

  1. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022)

    Article  PubMed  Google Scholar 

  2. N. Duma, R. Santana-Davila, J.R. Molina, Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin. Proc. 94, 1623–1640 (2019)

  3. I.R. Konig, O. Fuchs, G. Hansen, E. von Mutius, M.V. Kopp, What is precision medicine? Eur. Respir J. 50(2017)

  4. B.W. Carter, M. Altan, G.S. Shroff, M.T. Truong, I. Vlahos, Post-chemotherapy and targeted therapy imaging of the chest in lung cancer. Clin. Radiol. 77, e1–e10 (2022)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Chen, Z. Chen, R. Chen, C. Fang, C. Zhang, M. Ji, X. Yang, Immunotherapy-based combination strategies for treatment of EGFR-TKI-resistant non-small-cell lung cancer. Future Oncol. 18, 1757–1775 (2022)

    Article  CAS  PubMed  Google Scholar 

  6. M. Haider, A. Elsherbeny, V. Pittala, V. Consoli, M.A. Alghamdi, Z. Hussain, G. Khoder, K. Greish, Nanomedicine strategies for management of Drug Resistance in Lung Cancer. Int. J. Mol. Sci. 23(2022)

  7. K. O’Leary, A. Shia, P. Schmid, Epigenetic regulation of EMT in Non-Small Cell Lung Cancer. Curr. Cancer Drug Targets. 18, 89–96 (2018)

    Article  PubMed  Google Scholar 

  8. S. Panni, R.C. Lovering, P. Porras, S. Orchard, Non-coding RNA regulatory networks. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194417 (2020)

    Article  CAS  PubMed  Google Scholar 

  9. Q. Chen, X. Zhang, J. Shi, M. Yan, T. Zhou, Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem. Sci. 46, 790–804 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Zhang, X. Zhang, J. Shi, F. Tuorto, X. Li, Y. Liu, R. Liebers, L. Zhang, Y. Qu, J. Qian, M. Pahima, Y. Liu, M. Yan, Z. Cao, X. Lei, Y. Cao, H. Peng, S. Liu, Y. Wang, H. Zheng, R. Woolsey, D. Quilici, Q. Zhai, L. Li, T. Zhou, W. Yan, F. Lyko, Y. Zhang, Q. Zhou, E. Duan, Q. Chen, Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat. Cell. Biol. 20, 535–540 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. Park, S.H. Ahn, M.G. Shin, H.K. Kim, S. Chang, tRNA-Derived small RNAs: novel epigenetic regulators. Cancers (Basel) 12(2020)

  12. A.N. Shaukat, E.G. Kaliatsi, V. Stamatopoulou, C. Stathopoulos, Mitochondrial tRNA-Derived fragments and their contribution to Gene expression regulation. Front. Physiol. 12, 729452 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  13. J. Shi, Y. Zhang, T. Zhou, Q. Chen, tsRNAs: the Swiss Army Knife for Translational Regulation. Trends Biochem. Sci. 44, 185–189 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. Z. Su, I. Monshaugen, B. Wilson, F. Wang, A. Klungland, R. Ougland, A. Dutta, TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nat. Commun. 13, 2165 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. J.T. Wen, Z.H. Huang, Q.H. Li, X. Chen, H.L. Qin, Y. Zhao, Research progress on the tsRNA classification, function, and application in gynecological malignant tumors. Cell. Death Discovery 7(2021)

  16. B. Chen, S. Liu, H. Wang, G. Li, X. Lu, H. Xu, Differential Expression Profiles and Function Prediction of Transfer RNA-Derived Fragments in High-Grade Serous Ovarian Cancer. Biomed Res Int 2021, 5594081 (2021)

  17. W. Xu, M. Yu, Y. Wu, Y. Jie, X. Li, X. Zeng, F. Yang, Y. Chong, Plasma-derived exosomal SncRNA as a Promising Diagnostic Biomarker for early detection of HBV-Related Acute-on-chronic liver failure. Front. Cell. Infect. Microbiol. 12, 923300 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. X. Liu, Y.Z. Wen, Z.L. Huang, X. Shen, J.H. Wang, Y.H. Luo, W.X. Chen, Z.R. Lun, H.B. Li, L.H. Qu, H. Shan, L.L. Zheng, SARS-CoV-2 causes a significant stress response mediated by small RNAs in the blood of COVID-19 patients. Mol. Ther. Nucleic Acids. 27, 751–762 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. W. Liu, Y. Liu, Z. Pan, X. Zhang, Y. Qin, X. Chen, M. Li, X. Chen, Q. Zheng, X. Liu, D. Li, Systematic analysis of tRNA-Derived small RNAs discloses new therapeutic targets of caloric restriction in myocardial ischemic rats. Front. Cell. Dev. Biol. 8, 568116 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Z. Ma, J. Zhou, Y. Shao, F.A. Jafari, P. Qi, Y. Li, Biochemical properties and progress in cancers of tRNA-derived fragments. J. Cell. Biochem. 121, 2058–2063 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. O.A. Esakova, T.L. Grove, N.H. Yennawar, A.J. Arcinas, B. Wang, C. Krebs, S.C. Almo, S.J. Booker, Structural basis for tRNA methylthiolation by the radical SAM enzyme MiaB. Nature. 597, 566–570 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Rashad, K. Niizuma, T. Tominaga, tRNA cleavage: a new insight. Neural Regen Res. 15, 47–52 (2020)

    Article  PubMed  Google Scholar 

  23. H. Huang, H. Li, R. Pan, S. Wang, X. Liu, tRNA modifications and their potential roles in pancreatic cancer. Arch. Biochem. Biophys. 714, 109083 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. M. Kazimierczyk, M. Wojnicka, E. Biala, P. Zydowicz-Machtel, B. Imiolczyk, T. Ostrowski, A. Kurzynska-Kokorniak, J. Wrzesinski, Characteristics of transfer RNA-Derived fragments expressed during human renal cell development: the role of Dicer in tRF Biogenesis. Int. J. Mol. Sci. 23(2022)

  25. C.E. Monaghan, S.I. Adamson, M. Kapur, J.H. Chuang, S.L. Ackerman, The Clp1 R140H mutation alters tRNA metabolism and mRNA 3’ processing in mouse models of pontocerebellar hypoplasia. Proc. Natl. Acad. Sci. U. S. A. 118(2021)

  26. Z.X. Huang, J. Li, Q.P. Xiong, H. Li, E.D. Wang, R.J. Liu, Position 34 of tRNA is a discriminative element for m5C38 modification by human DNMT2. Nucleic Acids Res. 49, 13045–13061 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Rashad, X. Han, K. Sato, E. Mishima, T. Abe, T. Tominaga, K. Niizuma, The stress specific impact of ALKBH1 on tRNA cleavage and tiRNA generation. RNA Biol. 17, 1092–1103 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Z. Chen, M. Qi, B. Shen, G. Luo, Y. Wu, J. Li, Z. Lu, Z. Zheng, Q. Dai, H. Wang, Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 47, 2533–2545 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. Y. Wu, X. Yang, G. Jiang, H. Zhang, L. Ge, F. Chen, J. Li, H. Liu, H. Wang, 5’-tRF-GlyGCC: a tRNA-derived small RNA as a novel biomarker for colorectal cancer diagnosis. Genome Med. 13, 20 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. F. Pichot, M.C. Hogg, V. Marchand, V. Bourguignon, E. Jirstrom, C. Farrell, H.A. Gibriel, J.H.M. Prehn, Y. Motorin, M. Helm, Quantification of substoichiometric modification reveals global tsRNA hypomodification, preferences for angiogenin-mediated tRNA cleavage, and idiosyncratic epitranscriptomes of human neuronal cell-lines. Comput. Struct. Biotechnol. J. 21, 401–417 (2023)

    Article  CAS  PubMed  Google Scholar 

  31. K.Y. Cao, Y. Pan, T.M. Yan, P. Tao, Y. Xiao, Z.H. Jiang, Antitumor Activities of tRNA-Derived Fragments and tRNA Halves from Non-pathogenic Escherichia coli Strains on Colorectal Cancer and Their Structure-Activity Relationship. mSystems 7, e0016422 (2022)

  32. W. Wu, I. Lee, H. Spratt, X. Fang, X. Bao, tRNA-Derived fragments in Alzheimer’s Disease: implications for New Disease biomarkers and neuropathological mechanisms. J. Alzheimers Dis. 79, 793–806 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. F. Ren, K.Y. Cao, R.Z. Gong, M.L. Yu, P. Tao, Y. Xiao, Z.H. Jiang, The role of post-transcriptional modification on a new tRNA(ile(GAU)) identified from Ganoderma lucidum in its fragments’ cytotoxicity on cancer cells. Int. J. Biol. Macromol. 229, 885–895 (2023)

    Article  CAS  PubMed  Google Scholar 

  34. M. Pereira, D.R. Ribeiro, M.M. Pinheiro, M. Ferreira, S. Kellner, A.R. Soares, M(5)U54 tRNA hypomodification by lack of TRMT2A drives the generation of tRNA-Derived small RNAs. Int. J. Mol. Sci. 22(2021)

  35. A. Molla-Herman, M.T. Angelova, M. Ginestet, C. Carre, C. Antoniewski, J.R. Huynh, tRNA fragments populations analysis in mutants affecting tRNAs Processing and tRNA methylation. Front. Genet. 11, 518949 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Z. Sun, J. Tan, M. Zhao, Q. Peng, M. Zhou, S. Zuo, F. Wu, X. Li, Y. Dong, M. Xie, Y. Yang, J. Zhou, X. Liu, Q. He, Z. He, X. Yu, Q. He, Integrated genomic analysis reveals regulatory pathways and dynamic landscapes of the tRNA transcriptome. Sci. Rep. 11, 5226 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. Liaqat, C. Stiller, M. Michel, M.V. Sednev, C. Hobartner, N(6) -Isopentenyladenosine in RNA determines the cleavage site of endonuclease deoxyribozymes. Angew Chem. Int. Ed. Engl. 59, 18627–18631 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Z. Liu, H.K. Kim, J. Xu, Y. Jing, M.A. Kay, The 3’tsRNAs are aminoacylated: Implications for their biogenesis. PLoS Genet. 17, e1009675 (2021)

  39. U. Testa, E. Pelosi, G. Castelli, Molecular charcterization of lung adenocarcinoma combining whole exome sequencing, copy number analysis and gene expression profiling. Expert Rev. Mol. Diagn. 22, 77–100 (2022)

    Article  CAS  PubMed  Google Scholar 

  40. F. Santos, A.M. Capela, F. Mateus, S. Nobrega-Pereira, Bernardes de Jesus, non-coding antisense transcripts: fine regulation of gene expression in cancer. Comput. Struct. Biotechnol. J. 20, 5652–5660 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Roy, N. Ganguly, S. Banerjee, Exploring clinical implications and role of non-coding RNAs in lung carcinogenesis. Mol. Biol. Rep. 49, 6871–6883 (2022)

    Article  CAS  PubMed  Google Scholar 

  42. A.S. Doghish, A. Ismail, M.A. Elrebehy, A.M.M. Elbadry, H.H. Mahmoud, S.M. Farouk, G.A.A. Serea, R.A.A. Elghany, K.K. El-Halwany, A.O. Alsawah, H.I. Dewidar, H.A. El-Mahdy, A study of miRNAs as cornerstone in lung cancer pathogenesis and therapeutic resistance: a focus on signaling pathways interplay. Pathol. Res. Pract. 237(2022)

  43. X. Zhang, X. Wang, B. Chai, Z. Wu, X. Liu, H. Zou, Z. Hua, Z. Ma, W. Wang, Downregulated miR-18a and miR-92a synergistically suppress non-small cell lung cancer via targeting sprouty 4. Bioengineered. 13, 11281–11295 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. Hua, X. Wang, L. Ma, J. Li, G. Cao, S. Zhang, W. Lin, CircVAPA promotes small cell lung cancer progression by modulating the mir-377-3p and miR-494-3p/IGF1R/AKT axis. Mol. Cancer. 21, 123 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M. Yu, B. Lu, J. Zhang, J. Ding, P. Liu, Y. Lu, tRNA-derived RNA fragments in cancer: current status and future perspectives. J. Hematol. Oncol. 13, 121 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  46. L. Ye, F. Wang, J. Wang, H. Wu, H. Yang, Z. Yang, H. Huang, Role and mechanism of miR-211 in human cancer. J. Cancer. 13, 2933–2944 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. J. Shen, Y. Wu, W. Ruan, F. Zhu, S. Duan, miR-1908 Dysregulation in Human Cancers. Front. Oncol. 12, 857743 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. T.T.P. Nguyen, K.H. Suman, T.B. Nguyen, H.T. Nguyen, D.N. Do, The Role of miR-29s in Human Cancers-An Update. Biomedicines 10(2022)

  49. W. Meng, Y. Li, B. Chai, X. Liu, Z. Ma, miR-199a: a tumor suppressor with noncoding RNA network and therapeutic candidate in Lung Cancer. Int. J. Mol. Sci. 23(2022)

  50. L. Zhang, Z. Yang, A. Ma, Y. Qu, S. Xia, D. Xu, C. Ge, B. Qiu, Q. Xia, J. Li, Y. Liu, Growth arrest and DNA damage 45G down-regulation contributes to Janus kinase/signal transducer and activator of transcription 3 activation and cellular senescence evasion in hepatocellular carcinoma. Hepatology. 59, 178–189 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. F. Hu, Y. Niu, X. Mao, J. Cui, X. Wu, C.B. 2 Simone nd, H.S. Kang, W. Qin, L. Jiang, tsRNA-5001a promotes proliferation of lung adenocarcinoma cells and is associated with postoperative recurrence in lung adenocarcinoma patients. Transl Lung Cancer Res. 10, 3957–3972 (2021)

  52. H. Fan, H. Liu, Y. Lv, Y. Song, AS-tDR-007872: A Novel tRNA-Derived Small RNA Acts an Important Role in Non-Small-Cell Lung Cancer. Comput. Math. Methods Med. 2022, 3475955 (2022)

  53. X. Li, D. Zhang, B. Li, B. Zou, S. Wang, B. Fan, W. Li, J. Yu, L. Wang, Clinical implications of germline BCL2L11 deletion polymorphism in pretreated advanced NSCLC patients with osimertinib therapy. Lung Cancer. 151, 39–43 (2021)

    Article  CAS  PubMed  Google Scholar 

  54. H. Ma, G. Liu, B. Yu, J. Wang, Y. Qi, Y. Kou, Y. Hu, S. Wang, F. Wang, D. Chen, RNA-binding protein CELF6 modulates transcription and splicing levels of genes associated with tumorigenesis in lung cancer A549 cells. PeerJ 10, e13800 (2022)

  55. L. Ma, X. Xue, X. Zhang, K. Yu, X. Xu, X. Tian, Y. Miao, F. Meng, X. Liu, S. Guo, S. Qiu, Y. Wang, J. Cui, W. Guo, Y. Li, J. Xia, Y. Yu, J. Wang, The essential roles of m(6)a RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J. Exp. Clin. Cancer Res. 41, 36 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. J. Wang, Z. Wang, W. Lin, Q. Han, H. Yan, W. Yao, R. Dong, D. Jia, K. Dong, K. Li, LINC01296 promotes neuroblastoma tumorigenesis via the NCL-SOX11 regulatory complex. Mol. Ther. Oncolytics. 24, 834–848 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. N.C. Zetouni, C.M. Sergi, in Metastasis, ed. by C.M. Sergi (Brisbane (AU), 2022)

  58. X. Liu, W. Mei, V. Padmanaban, H. Alwaseem, H. Molina, M.C. Passarelli, B. Tavora, S.F. Tavazoie, A pro-metastatic tRNA fragment drives Nucleolin oligomerization and stabilization of its bound metabolic mRNAs. Mol. Cell 82, 2604–2617 e2608 (2022)

  59. H. Shaath, R. Vishnubalaji, R. Elango, A. Kardousha, Z. Islam, R. Qureshi, T. Alam, P.R. Kolatkar, N.M. Alajez, Long non-coding RNA and RNA-binding protein interactions in cancer: experimental and machine learning approaches. Semin. Cancer Biol. 86, 325–345 (2022)

    Article  CAS  PubMed  Google Scholar 

  60. S.A. Lachke, RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Exp. Eye Res. 214, 108889 (2022)

    Article  CAS  PubMed  Google Scholar 

  61. W. Yang, K. Gao, Y. Qian, Y. Huang, Q. Xiang, C. Chen, Q. Chen, Y. Wang, F. Fang, Q. He, S. Chen, J. Xiong, Y. Chen, N. Xie, D. Zheng, R. Zhai, A novel tRNA-derived fragment AS-tDR-007333 promotes the malignancy of NSCLC via the HSPB1/MED29 and ELK4/MED29 axes. J. Hematol. Oncol. 15, 53 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. W. Zhang, X. Ruan, Y. Li, J. Zhi, L. Hu, X. Hou, X. Shi, X. Wang, J. Wang, W. Ma, P. Gu, X. Zheng, M. Gao, KDM1A promotes thyroid cancer progression and maintains stemness through the Wnt/beta-catenin signaling pathway. Theranostics. 12, 1500–1517 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. A.D. Durbin, T. Wang, V.K. Wimalasena, M.W. Zimmerman, D. Li, N.V. Dharia, L. Mariani, N.A.M. Shendy, S. Nance, A.G. Patel, Y. Shao, M. Mundada, L. Maxham, P.M.C. Park, L.H. Sigua, K. Morita, A.S. Conway, A.L. Robichaud, A.R. Perez-Atayde, M.J. Bikowitz, T.R. Quinn, O. Wiest, J. Easton, E. Schonbrunn, M.L. Bulyk, B.J. Abraham, K. Stegmaier, A.T. Look, J., Qi, EP300 Selectively Controls the Enhancer Landscape of MYCN-Amplified Neuroblastoma. Cancer Discov. 12, 730–751 (2022)

  64. X. Gu, Y. Zhang, X. Qin, S. Ma, Y. Huang, S. Ju, Transfer RNA-derived small RNA: an emerging small non-coding RNA with key roles in cancer. Exp. Hematol. Oncol. 11, 35 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. W.J. de Jonge, H.P. Patel, J.V.W. Meeussen, T.L. Lenstra, Following the tracks: how transcription factor binding dynamics control transcription. Biophys. J. 121, 1583–1592 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  66. R.W.J. Wong, J.Z.L. Ong, M.S. Theardy, T. Sanda, IRF4 as an oncogenic master transcription factor. Cancers (Basel) 14(2022)

  67. P. Debnath, R.S. Huirem, P. Dutta, S. Palchaudhuri, Epithelial-mesenchymal transition and its transcription factors. Biosci. Rep. 42(2022)

  68. L. Shen, Z. Tan, M. Gan, Q. Li, L. Chen, L. Niu, D. Jiang, Y. Zhao, J. Wang, X. Li, S. Zhang, L. Zhu, tRNA-Derived Small Non-Coding RNAs as Novel Epigenetic Molecules Regulating Adipogenesis. Biomolecules 9(2019)

  69. N.H. Farina, S. Scalia, C.E. Adams, D. Hong, A.J. Fritz, T.L. Messier, V. Balatti, D. Veneziano, J.B. Lian, C.M. Croce, G.S. Stein, J.L. Stein, Identification of tRNA-derived small RNA (tsRNA) responsive to the tumor suppressor, RUNX1, in breast cancer. J. Cell. Physiol. 235, 5318–5327 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. L. Zheng, H. Xu, Y. Di, L. Chen, J. Liu, L. Kang, L. Gao, ELK4 promotes the development of gastric cancer by inducing M2 polarization of macrophages through regulation of the KDM5A-PJA2-KSR1 axis. J. Transl Med. 19, 342 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. M. Chen, Y. Liu, Y. Yang, Y. Qiu, Z. Wang, X. Li, W. Zhang, Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: implications in cancer immunotherapy. Genes Dis. 9, 981–999 (2022)

    Article  CAS  PubMed  Google Scholar 

  72. X. Hu, J. Miao, M. Zhang, X. Wang, Z. Wang, J. Han, D. Tong, C. Huang, miRNA-103a-3p promotes human gastric Cancer cell proliferation by Targeting and suppressing ATF7 in vitro. Mol. Cells. 41, 390–400 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. V. Balatti, G. Nigita, D. Veneziano, A. Drusco, G.S. Stein, T.L. Messier, N.H. Farina, J.B. Lian, L. Tomasello, C.G. Liu, A. Palamarchuk, J.R. Hart, C. Bell, M. Carosi, E. Pescarmona, L. Perracchio, M. Diodoro, A. Russo, A. Antenucci, P. Visca, A. Ciardi, C.C. Harris, P.K. Vogt, Y. Pekarsky, C.M. Croce, tsRNA signatures in cancer. Proc. Natl. Acad. Sci. U. S. A. 114, 8071–8076 (2017)

  74. X. Sun, J. Yang, M. Yu, D. Yao, L. Zhou, X. Li, Q. Qiu, W. Lin, B. Lu, E. Chen, P. Wang, W. Chen, S. Tao, H. Xu, A. Williams, Y. Liu, X. Pan, A.W. Jr. Cowley, W. Lu, M. Liang, P. Liu, Y. Lu, Global identification and characterization of tRNA-derived RNA fragment landscapes across human cancers. NAR Cancer. 2, zcaa031 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  75. Y. Shao, Q. Sun, X. Liu, P. Wang, R. Wu, Z. Ma, tRF-Leu-CAG promotes cell proliferation and cell cycle in non-small cell lung cancer. Chem. Biol. Drug Des. 90, 730–738 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. N.J. Taylor, J.T. Bensen, C. Poole, M.A. Troester, M.D. Gammon, J. Luo, R.C. Millikan, A.F. Olshan, Genetic variation in cell cycle regulatory gene AURKA and association with intrinsic breast cancer subtype. Mol. Carcinog. 54, 1668–1677 (2015)

    Article  CAS  PubMed  Google Scholar 

  77. M. Zhang, C. Huo, Y. Jiang, J. Liu, Y. Yang, Y. Yin, Y. Qu, AURKA and FAM83A are prognostic biomarkers and correlated with tumor-infiltrating lymphocytes in smoking related Lung Adenocarcinoma. J. Cancer. 12, 1742–1754 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. X. Gong, J. Du, S.H. Parsons, F.F. Merzoug, Y. Webster, P.W. Iversen, L.C. Chio, R.D. Van Horn, X. Lin, W. Blosser, B. Han, S. Jin, S. Yao, H. Bian, C. Ficklin, L. Fan, A. Kapoor, S. Antonysamy, A.M. Mc Nulty, K. Froning, D. Manglicmot, A. Pustilnik, K. Weichert, S.R. Wasserman, M. Dowless, C. Marugan, C. Baquero, M.J. Lallena, S.W. Eastman, Y.H. Hui, M.Z. Dieter, T. Doman, S. Chu, H.R. Qian, X.S. Ye, D.A. Barda, G.D. Plowman, C. Reinhard, R.M. Campbell, J.R. Henry, Buchanan, Aurora a kinase inhibition is Synthetic Lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 9, 248–263 (2019)

    Article  CAS  PubMed  Google Scholar 

  79. W. Du, T.L. Frankel, M. Green, W. Zou, IFNgamma signaling integrity in colorectal cancer immunity and immunotherapy. Cell. Mol. Immunol. 19, 23–32 (2022)

    Article  CAS  PubMed  Google Scholar 

  80. B. Taciak, I. Pruszynska, L. Kiraga, M. Bialasek, M. Krol, Wnt signaling pathway in development and cancer. J. Physiol. Pharmacol. 69(2018)

  81. Y. Zheng, L. Wang, L. Yin, Z. Yao, R. Tong, J. Xue, Y. Lu, Lung Cancer Stem cell markers as therapeutic targets: an update on Signaling Pathways and Therapies. Front. Oncol. 12, 873994 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. J.Y. Zheng, C. Li, Z.N. Zhu, F.M. Yang, X.M. Wang, P. Jiang, F. Yan, A 5’-tRNA derived Fragment named tiRNA-Val-CAC-001 works as a suppressor in gastric Cancer. Cancer Manag. Res. 14, 2323–2337 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  83. D. Mo, P. Jiang, Y. Yang, X. Mao, X. Tan, X. Tang, D. Wei, B. Li, X. Wang, L. Tang, F. Yan, A tRNA fragment, 5’-tiRNA(val), suppresses the Wnt/beta-catenin signaling pathway by targeting FZD3 in breast cancer. Cancer Lett. 457, 60–73 (2019)

    Article  CAS  PubMed  Google Scholar 

  84. L. Zhu, Z. Li, X. Yu, Y. Ruan, Y. Shen, Y. Shao, X. Zhang, G. Ye, J. Guo, The tRNA-derived fragment 5026a inhibits the proliferation of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Stem Cell. Res. Ther. 12, 418 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. W. Xu, B. Zhou, J. Wang, L. Tang, Q. Hu, J. Wang, H. Chen, J. Zheng, F. Yan, H. Chen, tRNA-Derived fragment tRF-Glu-TTC-027 regulates the progression of gastric carcinoma via MAPK signaling pathway. Front. Oncol. 11, 733763 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. B. Huang, H. Yang, X. Cheng, D. Wang, S. Fu, W. Shen, Q. Zhang, L. Zhang, Z. Xue, Y. Li, Y. Da, Q. Yang, Z. Li, L. Liu, L. Qiao, Y. Kong, Z. Yao, P. Zhao, M. Li, R. Zhang, tRF/miR-1280 suppresses stem cell-like cells and metastasis in Colorectal Cancer. Cancer Res. 77, 3194–3206 (2017)

    Article  CAS  PubMed  Google Scholar 

  87. E.W. Tao, H.L. Wang, W.Y. Cheng, Q.Q. Liu, Y.X. Chen, Q.Y. Gao, A specific tRNA half, 5’tiRNA-His-GTG, responds to hypoxia via the HIF1alpha/ANG axis and promotes colorectal cancer progression by regulating LATS2. J. Exp. Clin. Cancer Res. 40, 67 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. D. Mo, F. He, J. Zheng, H. Chen, L. Tang, F. Yan, tRNA-Derived fragment tRF-17-79MP9PP attenuates Cell Invasion and Migration via THBS1/TGF-beta1/Smad3 Axis in breast Cancer. Front. Oncol. 11, 656078 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Y.Y. Xie, L.P. Yao, X.C. Yu, Y. Ruan, Z. Li, J.M. Guo, Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct. Target. Therapy 5(2020)

  90. V. Pliatsika, P. Loher, R. Magee, A.G. Telonis, E. Londin, M. Shigematsu, Y. Kirino, I. Rigoutsos, MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all the Cancer Genome Atlas projects. Nucleic Acids Res. 46, D152–D159 (2018)

    Article  CAS  PubMed  Google Scholar 

  91. J. Ma, F. Liu, Study of tRNA-Derived Fragment tRF-20-S998LO9D in Pan-Cancer. Dis. Markers 2022, 8799319 (2022)

  92. Z. Gao, M. Jijiwa, M. Nasu, H. Borgard, T. Gong, J. Xu, S. Chen, Y. Fu, Y. Chen, X. Hu, G. Huang, Y. Deng, Comprehensive landscape of tRNA-derived fragments in lung cancer. Mol. Ther. Oncolytics. 26, 207–225 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. J. Zhang, L. Li, L. Luo, X. Yang, J. Zhang, Y. Xie, R. Liang, W. Wang, S. Lu, Screening and potential role of tRFs and tiRNAs derived from tRNAs in the carcinogenesis and development of lung adenocarcinoma. Oncol. Lett. 22, 506 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  94. J. Wang, X. Liu, W. Cui, Q. Xie, W. Peng, H. Zhang, Y. Gao, C. Zhang, C. Duan, Plasma tRNA-derived small RNAs signature as a predictive and prognostic biomarker in lung adenocarcinoma. Cancer Cell. Int. 22, 59 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. S.R. Yang, A.M. Schultheis, H. Yu, D. Mandelker, M. Ladanyi, R. Buttner, Precision medicine in non-small cell lung cancer: current applications and future directions. Semin. Cancer Biol. 84, 184–198 (2022)

    Article  CAS  PubMed  Google Scholar 

  96. K. Christofyllakis, A.R. Monteiro, O. Cetin, I.A. Kos, A. Greystoke, A. Luciani, Biomarker guided treatment in oncogene-driven advanced non-small cell lung cancer in older adults: a Young International Society of Geriatric Oncology report. J. Geriatr. Oncol. 13, 1071–1083 (2022)

    Article  CAS  PubMed  Google Scholar 

  97. C. Zhong, Z. Xie, L.H. Zeng, C. Yuan, S. Duan, MIR4435-2HG is a potential Pan-Cancer Biomarker for diagnosis and prognosis. Front. Immunol. 13, 855078 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. C. Zhong, Z. Xie, J. Shen, Y. Jia, S. Duan, LINC00665: An Emerging Biomarker for Cancer Diagnostics and Therapeutics. Cells 11, (2022)

  99. Y. Jia, W. Tan, Y. Zhou, Transfer RNA-derived small RNAs: potential applications as novel biomarkers for disease diagnosis and prognosis. Ann. Transl Med. 8, 1092 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. T. Zong, Y. Yang, H. Zhao, L. Li, M. Liu, X. Fu, G. Tang, H. Zhou, L.H.H. Aung, P. Li, J. Wang, Z. Wang, T. Yu, tsRNAs: Novel small molecules from cell function and regulatory mechanism to therapeutic targets. Cell Prolif. 54, e12977 (2021)

  101. S.U. Umu, H. Langseth, V. Zuber, A. Helland, R. Lyle, T.B. Rounge, Serum RNAs can predict lung cancer up to 10 years prior to diagnosis. Elife 11(2022)

  102. W. Gu, J. Shi, H. Liu, X. Zhang, J.J. Zhou, M. Li, D. Zhou, R. Li, J. Lv, G. Wen, S. Zhu, T. Qi, W. Li, X. Wang, Z. Wang, H. Zhu, C. Zhou, K.S. Knox, T. Wang, Q. Chen, Z. Qian, T. Zhou, Peripheral blood non-canonical small non-coding RNAs as novel biomarkers in lung cancer. Mol. Cancer. 19, 159 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. J. You, G. Yang, Y. Wu, X. Lu, S. Huang, Q. Chen, C. Huang, F. Chen, X. Xu, L. Chen, Plasma tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 as novel diagnostic biomarkers for lung adenocarcinoma. Front. Oncol. 12, 991451 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. J. Li, C. Cao, L. Fang, W. Yu, Serum transfer RNA-derived fragment tRF-31-79MP9P9NH57SD acts as a novel diagnostic biomarker for non-small cell lung cancer. J. Clin. Lab. Anal. 36(2022)

  105. R. Kalluri, V.S. LeBleu, The biology, function, and biomedical applications of exosomes. Science 367(2020)

  106. H. Xie, J. Yao, Y. Wang, B. Ni, Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv. 29, 1257–1271 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. S. Liu, W. Wang, Y. Ning, H. Zheng, Y. Zhan, H. Wang, Y. Yang, J. Luo, Q. Wen, H. Zang, J. Peng, J. Ma, S. Fan, Exosome-mediated mir-7-5p delivery enhances the anticancer effect of Everolimus via blocking MNK/eIF4E axis in non-small cell lung cancer. Cell. Death Dis. 13, 129 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  108. M.Y. Li, L.Z. Liu, M. Dong, Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol. Cancer. 20, 22 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  109. B. Zheng, X. Song, L. Wang, Y. Zhang, Y. Tang, S. Wang, L. Li, Y. Wu, X. Song, L. Xie, Plasma exosomal tRNA-derived fragments as diagnostic biomarkers in non-small cell lung cancer. Front. Oncol. 12, 1037523 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. J. Xi, Z. Zeng, X. Li, X. Zhang, J. Xu, Expression and diagnostic value of tRNA-Derived fragments secreted by Extracellular vesicles in Hypopharyngeal Carcinoma. Onco Targets Ther. 14, 4189–4199 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  111. P. Zhang, W. Wu, Q. Chen, M. Chen, Non-coding RNAs and their Integrated Networks. J. Integr. Bioinform 16(2019)

  112. H. Yang, H. Zhang, Z. Chen, Y. Wang, B. Gao, Effects of tRNA-derived fragments and microRNAs regulatory network on pancreatic acinar intracellular trypsinogen activation. Bioengineered. 13, 3207–3220 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the Shanghai Science and Technology Committee (No. 20S11901300) and Yunnan Provincial Science and Technology Department - Kunming Medical University Joint Fund Key Project (202201AY070001-137). The authors are thankful for Shanghai University for providing open access support. The authors thank Dr. Yang Shao (Cancer Institute, Fudan University Shanghai Cancer Center) for critical reading of the manuscript.

Funding

This study was funded by the Shanghai Science and Technology Committee (No. 20S11901300) and Yunnan Provincial Science and Technology Department - Kunming Medical University Joint Fund Key Project (202201AY070001-137). Open access funding was provided by Shanghai University.

Author information

Authors and Affiliations

Authors

Contributions

Zhongliang Ma, Weiwei Wang, Fan Wu presented conceptualization. Qianqian Yang, Wei Pan, Wei Meng searched literatures. Fan Wu wrote the main manuscript text. Fan Wu, QianqianYang, Wei Pan, Wei Meng prepared figures and tables. Zhongliang Ma, Weiwei Wang supervised the review. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Zhongliang Ma or Weiwei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Informed consent

Not applicable.

Ethics declarations

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Yang, Q., Pan, W. et al. tRNA-derived fragments: mechanism of gene regulation and clinical application in lung cancer. Cell Oncol. 47, 37–54 (2024). https://doi.org/10.1007/s13402-023-00864-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00864-z

Keywords

Navigation