Skip to main content

Advertisement

Log in

Exploring clinical implications and role of non-coding RNAs in lung carcinogenesis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Lung cancer is the utmost familiar category of cancer with greatest fatality rate worldwide and several regulatory mechanisms exercise cellular control on critical oncogenic trails implicated in lung associated carcinogenesis. The non-coding RNAs (ncRNAs) are shown to play a variety of regulatory roles, including stimulating cell proliferation, inhibiting programmed cell death, enhancing cancer cell metastatic ability and acquiring resistance to drugs. Furthermore, ncRNAs exhibit tissue-specific expression as well as great stability in bodily fluids. As a consequence, they are strong contenders for cancer based theragnostics. microRNA (miRNA) alters gene expression primarily by either degrading or interfering with the translation of targeted mRNA and long non-coding RNAs (lncRNAs) can influence gene expression by targeting transcriptional activators or repressors, RNA polymers and even DNA-duplex. lncRNAs are typically found to be dysregulated in lung cancer and hence targeting ncRNAs could be a viable strategy for developing potential therapies as well as for overcoming chemoresistance in lung cancer. The purpose of this review is to elucidate the role of ncRNAs, revisiting the recent studies in lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ncRNA:

Non-coding RNA

miRNA:

microRNA

lncRNAs:

Long non-coding RNA

NSCLC:

Non-small cell lung cancer

mRNA:

Messenger RNA

tRNA:

Transfer RNA

rRNA:

Ribosomal RNA

siRNA:

Small interfering RNA

piRNA:

Piwi-interacting RNA

snoRNA:

Small nucleolar RNA

rRNA:

Ribosomal RNA

SnRNA:

Small nuclear RNA

Endo-SiRNA:

Endogenous small-interfering RNA

SncRNA:

Short non-coding RNAs

SCLC:

Small cell lung cancer

LUAD:

Lung adenocarcinoma

LUSC:

Lung squamous cell carcinoma

LCC:

Large cell carcinoma

MALAT1:

Metastasis associated in lung adenocarcinoma transcript

circRNA:

Circular RNA

APAF1:

Apoptosis peptidase activating factor 1

RASA1:

RAS P21 protein activator 1

PDCD4:

Programmed cell death 4

SPRED1/2:

Sprouty related EVH1 domain containing 1/2

SPRY1/3/4:

Sprouty 1/3/4

RBL2:

RB Transcriptional corepressor like 2

M6a:

N6 -Methyladenine

METTL3:

Methyltransferase-like 3

Pri-miRNA:

Primary microRNA

DGCR8:

Digeorge syndrome critical region gene 8 microprocessor complex component

DROSHA:

Drosha ribonuclease type II

BRD4:

Bromodomain-containing protein 4

IRF2:

Interferon regulatory factor 2

SUZ12:

SUZ12 polycomb repressive complex 2 subunit

EZH2:

Zeste 2 polycomb repressive complex 2 subunits

ZFX:

Zinc finger X-chromosomal protein

PTPRU:

Protein tyrosine phosphatase receptor type U

EPAS1:

Endothelial PAS domain protein 1

YBX1:

Y-box binding protein 1

SMAD3:

SMAD family member 3

CTLA4:

Cytotoxic T-lymphocyte-associate protein 4

PD1:

Programmed death protein 1

PD-L1:

Programmed death ligand 1

VHL:

Von Hippel-Lindau

SDH:

Succinate dehydrogenase

FOXO3A:

Forkhead box O3

CXCR4:

C-X-C motif chemokine receptor 4

CAF:

Cancer associated fibroblasts

TME:

Tumour microenvironment

EMT:

Epithelial mesenchymal transition

PDCD4:

Programmed cell dealth 4

APAF1:

Apoptosis peptidase activating factor 1

RASA1:

RAS p21 protein activator 1

SPRED1/2:

Sprouty related EVH1 domain containing 1/2

SPRY1/3/4:

Sprouty 1/3/4

RBL2:

RB transcriptional corepressor like 2

EZH2:

Enhancer of zeste 2 polycomb repressive complex 2 subunits

ZFX:

Zinc finger X-chromosomal protein

References

  1. Athie A, Marchese FP, González J, Lozano T, Raimondi I, Juvvuna PK et al (2020) Analysis of copy number alterations reveals the lncRNA ALAL-1 as a regulator of lung cancer immune evasion. J Cell Biol 219:201908078

    Google Scholar 

  2. Arab K, Park YJ, Lindroth AM, Schafer A, Oakes C, Weichenhan D et al (2014) Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell 55:604–614

    CAS  PubMed  Google Scholar 

  3. Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG (2013) catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics 29(22):2928–2930

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Anfossi S, Babayan A, Pantel K, Calin GA (2018) Clinical utility of circulating non-coding RNAs—an update. Nat Rev Clin Oncol 15:541–563

    PubMed  Google Scholar 

  5. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, KuramochiMiyagawa S, Nakano T et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207

    CAS  PubMed  Google Scholar 

  6. Bai H, Cao Z, Deng C, Zhou L, Wang C (2012) miR-181a sensitizes resistant leukaemia HL-60/Ara-C cells to Ara-C by inducing apoptosis. J Cancer Res Clin Oncol 138(4):595–602

    CAS  PubMed  Google Scholar 

  7. Bainbridge MN, Warren RL, Hirst M, Romanuik T, Zeng T, Go A, Delaney A, Griffith M, Hickenbotham M, Magrini V et al (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genom 7:246

    Google Scholar 

  8. Bao Z, Yang Z, Huang Z, Zhou Y, Cui Q, Dong D (2019) LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Res 47(1):D1034–D1037

    CAS  PubMed  Google Scholar 

  9. Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S, Hong DS (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs 35:180–188

    CAS  Google Scholar 

  10. Berghmans T, Ameye L, Willems L, Paesmans M, Mascaux C, Lafitte JJ, Meert AP, Scherpereel A, Cortot AB, Cstoth I et al (2013) Identification of microRNA-based signatures for response and survival for non-small cell lung cancer treated with cisplatin-vinorelbine A ELCWP prospective study. Lung Cancer 82:340–345

    CAS  PubMed  Google Scholar 

  11. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    CAS  PubMed  Google Scholar 

  12. Billy E, Brondani V, Zhang H, Muller U, Filipowicz W (2001) Specific interference with gene expression induced by long, double stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc Natl Acad Sci USA 98:14428–14433

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502

    CAS  PubMed  Google Scholar 

  15. Chen Q-N, Wei C-C, Wang Z-X, Sun M (2016) Long non-coding RNAs in anticancer drug resistance. Oncotarget 8:1925–1936

    PubMed Central  Google Scholar 

  16. Chen Y, Jacamo R, Konopleva M, Garzon R, Croce C, Andreeff M (2013) CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. J Clin Investig 123(6):2395–2407

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Berghmans T, Ameye L, Lafitte J-J, Colinet B, Cortot A, CsToth I, Holbrechts S, Lecomte J, Mascaux C, Meert A-P et al (2015) Prospective validation obtained in a similar group of patients and with similar high throughput biological tests failed to confirm signatures for prediction of response to chemotherapy and survival in advanced NSCLC: a prospective study from the European Lung Cancer Working Party. Front Oncol 4:386

    PubMed  PubMed Central  Google Scholar 

  18. Chen F-F, Yan J-J, Lai W-W, Jin Y-T, Su I-J (1998) Epstein-barr virus-associated nonsmall cell lung carcinoma. Cancer 82:2334–2342

    CAS  PubMed  Google Scholar 

  19. Dai E, Yang F, Wang J, Zhou X, Song Q, An W, Wang L, Jiang W (2017) ncDR: a comprehensive resource of non-coding RNAs involved in drug resistance. Bioinformatics 33(24):4010–4011

    CAS  PubMed  Google Scholar 

  20. De Bacco F, Luraghi P, Medico E, Reato G, Girolami F, Perera T, Gabriele P, Comoglio PM, Boccaccio C (2011) Induction of MET by ionizing radiation and its role in radio resistance and invasive growth of cancer. J Natl Cancer Inst 103(8):645–661

    PubMed  Google Scholar 

  21. Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence based clinical guidelines. Cancer-Am Cancer Soc 104(6):1129–1137

    Google Scholar 

  22. Deveson IW, Hardwick SA, Mercer TR, Mattick JS (2017) The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome. Trends Genet 33:464–478

    CAS  PubMed  Google Scholar 

  23. Ekert JE, Johnson K, Strake B, Pardinas J, Jarantow S, Perkinson R, Colter DC (2014) Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro—implication for drug development. PLoS ONE 9:e92248

    PubMed  PubMed Central  Google Scholar 

  24. Fan L, Huang C, Li J, Gao T, Lin Z, Yao T (2018) Long non-coding RNA urothelial cancer associated 1 regulates radio resistance via the hexokinase 2/glycolytic pathway in cervical cancer. Int J Mol Med 42:2247–2259

    CAS  PubMed  Google Scholar 

  25. Fang Z, Xu J, Zhang B, Wang W, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S (2020) The promising role of noncoding RNAs in cancer-associated fibroblasts: an overview of current status and future perspectives. J Hematol Oncol 13(1):154

    PubMed  PubMed Central  Google Scholar 

  26. Feng DD, Zhang H, Zhang P, Zheng YS, Zhang XJ, Han BW, Luo XQ, Xu L, Zhou H, Qu LH, Chen YQ (2011) Down-regulated miR-331-5p and miR-27a are associated with chemotherapy resistance and relapse in leukaemia. J Cell Mol Med 15(10):2164–2175

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fields BD, Nguyen SC, Nir G, Kennedy S (2019) A multiplexed DNA FISH strategy for assessing genome architecture in Caenorhabditis elegans. Elife 8:e42823

    PubMed  PubMed Central  Google Scholar 

  28. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  PubMed  Google Scholar 

  29. Freeman LA (2013) Cloning full-length transcripts and transcript variants using 5′ and 3′ RACE. Methods Mol Biol 1027:3–17

    CAS  PubMed  Google Scholar 

  30. Gao J, Liu L, Li G, Cai M, Tan C, Han X et al (2019) LncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis. Int J Biol Macromol 126:994–1001

    CAS  PubMed  Google Scholar 

  31. Gelali E, Girelli G, Matsumoto M, Wernersson E, Custodio J, Mota A et al (2019) iFISH is a publically available resource enabling versatile DNA FISH to study genome architecture. Nat Commun 10(1):1636

    PubMed  PubMed Central  Google Scholar 

  32. Gómez-Román JJ, Martínez MN, Fernández SL, Val-Bernal JF (2009) Epstein-Barr virus-associated adenocarcinomas and squamous-cell lung carcinomas. Mod Pathol 22:530–537

    PubMed  Google Scholar 

  33. Giorgetti L, Heard E (2016) Closing the loop: 3C versus DNA FISH. Genome Biol 17(1):215

    PubMed  PubMed Central  Google Scholar 

  34. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202

    PubMed  Google Scholar 

  35. Godinho M, Meijer D, Setyono-Han B, Dorssers LCJ, van Agthoven T (2011) Characterization of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. J Cell Physiol 226:1741–1749

    CAS  PubMed  Google Scholar 

  36. Grivna ST, Beyret E, Wang Z, Lin H (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20:1709–1714

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, Lo-Coco F, Tay Y, Beck AH, Pandolfi PP (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 166(4):1055–1056

    CAS  PubMed  Google Scholar 

  38. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    CAS  PubMed  Google Scholar 

  39. Han AJ, Xiong M, Zong YS (2000) Association of Epstein-Barr virus with lymphoepithelioma-like carcinoma of the lung in Southern China. Am J Clin Pathol 114:220–226

    CAS  PubMed  Google Scholar 

  40. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  41. Havelange V, Ranganathan P, Geyer S, Nicolet D, Huang X, Yu X, Volinia S, Kornblau SM, Andreeff M, Croce CM, Marcucci G, Bloomfield CD, Garzon R (2014) Implications of the miR-10 family in chemotherapy response of NPM1- mutated AML. Blood 123(15):2412–2415

    CAS  PubMed  PubMed Central  Google Scholar 

  42. He Y, Jing Y, Wei F, Tang Y, Yang L, Luo J et al (2018) Long non-coding RNA PVT1 predicts poor prognosis and induces radio resistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis 9:235

    PubMed  PubMed Central  Google Scholar 

  43. Hickey CJ, Schwind S, Radomska HS, Dorrance AM, Santhanam R, Mishra A, Wu YZ, Alachkar H, Maharry K, Nicolet D, Mrozek K, Walker A, Eiring AM, Whitman SP, Becker H, Perrotti D, Wu LC, Zhao X, Fehniger TA, Vij R, Byrd JC, Blum W, Lee LJ, Caligiuri MA, Bloomfield CD, Garzon R, Marcucci G (2013) Lenalidomide-mediated enhanced translation of C/EBPalpha-p30 protein up-regulates expression of the antileukemic microRNA-181a in acute myeloid leukemia. Blood 121(1):159–169

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ho JC-M, Leung C-C (2018) Management of co-existent tuberculosis and lung cancer. Lung Cancer 122:83–87

    PubMed  Google Scholar 

  45. Hoagland MB, Stephenson ML, Scott JF, Hecht LI, Zamecnik PC (1958) A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem 231:241–257

    CAS  PubMed  Google Scholar 

  46. Hou W, Tian Q, Zheng J, Bonkovsky HL (2010) MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology 51:1494–1504

    CAS  PubMed  Google Scholar 

  47. Hsu MT, Coca-Prados M (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280:339–340

    CAS  PubMed  Google Scholar 

  48. Huttenhofer A, Schattner P, Polacek N (2005) Non-coding RNAs: hope or hype? Trends Genet 21:289–297

    PubMed  Google Scholar 

  49. Huang H, Chen J, Ding C-M, Jin X, Jia Z-M, Peng J (2018) LncRNA NR2F1-AS1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCC1 via miR-363. J Cell Mol Med 22:3238–3245

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuzembayeva M, Hayes M, Sugden B (2014) Multiple functions are mediated by the miRNAs of Epstein-Barr virus. Curr Opin Virol 7:61–65

    PubMed  Google Scholar 

  51. Luo ML (2016) Methods to study long noncoding RNA biology in cancer. Adv Exp Med Biol 927:69–107

    CAS  PubMed  Google Scholar 

  52. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    CAS  PubMed  Google Scholar 

  53. Movia D, Bazou D, Volkov Y, Prina-Mello A (2018) Multilayered cultures of NSCLC cells grown at the air-liquid interface allow the efficacy testing of inhaled anti-cancer drugs. Sci Rep 8:12920

    PubMed  PubMed Central  Google Scholar 

  54. Lu H, He Y, Lin L, Qi Z, Ma L, Li L et al (2015) Long non-coding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145. Tumour Biol 37:1683–1691

    PubMed  Google Scholar 

  55. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  PubMed  Google Scholar 

  57. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    CAS  PubMed  Google Scholar 

  58. Jena BC, Das CK, Bharadwaj D, Manda M (2020) Cancer associated fibroblast mediated chemoresistance: a paradigm shift in understanding the mechanism of tumor progression. Biochim Biophys Acta (BBA) Rev Cancer 1874(2):188416

    CAS  Google Scholar 

  59. Jin C, Yan B, Lu Q, Lin Y, Ma L (2016) The role of MALAT1/miR-1/slug axis on radioresistance in nasopharyngeal carcinoma. Tumour Biol 37:4025–4033

    CAS  PubMed  Google Scholar 

  60. Jing L, Yuan W, Ruofan D, Jinjin Y, Haifeng Q (2015) HOTAIR enhanced aggressive biological behaviors and induced radio-resistance via inhibiting p21 in cervical cancer. Tumour Biol 36:3611–3619

    PubMed  Google Scholar 

  61. Johnson JM, Edwards S, Shoemaker D, Schadt EE (2005) Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet 21:93–102

    CAS  PubMed  Google Scholar 

  62. Kamel LM, Atef DM, Mackawy AMH, Shalaby SM, Abdelraheim N (2019) Circulating long non-coding RNA GAS5 and SOX2OT as potential biomarkers for diagnosis and prognosis of non-small cell lung cancer. Biotechnol Appl Biochem 66:634–642

    CAS  PubMed  Google Scholar 

  63. Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, Gingeras TR (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    CAS  PubMed  Google Scholar 

  64. Kapranov P, St Laurent G (2012) Dark matter RNA: existence, function, and controversy. Front Genet 3:60

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim JH, Nam B, Choi YJ, Kim SY, Lee J-E, Sung KJ, Kim WS, Choi C-M, Chang E-J, Koh JS et al (2018) Enhanced glycolysis supports cell survival in EGFR-mutant lung adenocarcinoma by inhibiting autophagy-mediated EGFR degradation. Cancer Res 78:4482–4496

    CAS  PubMed  Google Scholar 

  66. Kim JS, Kim EJ, Lee S, Tan X, Liu X, Park S, Kang K, Yoon J-S, Ko YH, Kurie JM et al (2019) MiR-34a and miR-34b/c has distinct effects on the suppression of lung adenocarcinomas. Exp Mol Med 51:9

    PubMed Central  Google Scholar 

  67. Kim M, Mun H, Sung CO, Cho EJ, Jeon H-J, Chun S-M, Jung DJ, Shin TH, Jeong GS, Kim DK et al (2019) Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun 10:3991

    PubMed  PubMed Central  Google Scholar 

  68. Koshiol J, Gulley ML, Zhao Y, Rubagotti M, Marincola FM, Rotunno M, Tang W, Bergen AW, Bertazzi PA, Roy D et al (2011) Epstein-Barr virus microRNAs and lung cancer. Br J Cancer 105:320–326

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kowalczyk MS, Higgs DR, Gingeras TR (2012) Molecular biology: RNA discrimination. Nature 482:310–311

    CAS  PubMed  Google Scholar 

  70. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    CAS  PubMed  Google Scholar 

  71. Lagarde J, Uszczynska-Ratajczak B, Santoyo-Lopez J, Gonzalez JM, Tapanari E, Mudge JM et al (2016) Extension of humanlncRNA transcripts by RACE coupledwith long-read high-throughput sequencing (RACE-Seq). Nat Commun 7:12339

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    CAS  PubMed  Google Scholar 

  73. Lu Y, Li T, Wei G, Liu L, Chen Q, Xu L et al (2016) The long non-coding RNA NEAT1 regulates epithelial to mesenchymal transition and radio resistance in through miR-204/ZEB1 axis in nasopharyngeal carcinoma. Tumour Biol 37:11733–11741

    CAS  PubMed  Google Scholar 

  74. Ma L, Cao J, Liu L, Du Q, Li Z, Zou D et al (2019) LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res 47(D1):D128–D134

    CAS  PubMed  Google Scholar 

  75. Le P, Romano G, Nana-Sinkam P, Acunzo M (2021) Non-coding RNAs in cancer diagnosis and therapy: focus on lung cancer. Cancers 13(6):1372

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS (2017) Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 16(1):10

    PubMed  PubMed Central  Google Scholar 

  77. Lee RC, Feinbaum RL, The AV (1993) C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  78. Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y et al (2018) A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-17-3454

    Article  PubMed  PubMed Central  Google Scholar 

  79. Martinez J, Patkaniowska A, Urlaub H, Lührmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    CAS  PubMed  Google Scholar 

  80. Mas-Ponte D, Carlevaro-Fita J, Palumbo E, Hermoso PT, Guigo R, Johnson R (2017) LncATLAS database for subcellular localization of long noncoding RNAs. RNA 23(7):1080–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    CAS  PubMed  Google Scholar 

  82. Muhammad II, Kong SL, Akmar AS, Munusamy U (2019) RNA-seq and ChIP-seq as complementary approaches for comprehension of plant transcriptional regulatory mechanism. Int J Mol Sci 21(1):167

    PubMed Central  Google Scholar 

  83. Li H, Hui L, Xu W (2012) miR-181a sensitizes a multidrug-resistant leukemia cell line K562/A02 to daunorubicin by targeting BCL-2. Acta Biochim Biophys Sin (Shanghai) 44(3):269–277

    CAS  Google Scholar 

  84. Li N, Meng D-D, Gao L, Xu Y, Liu P-J, Tian Y-W et al (2018) Overexpression of HOTAIR leads to radioresistance of human cervical cancer via promoting HIF-1α expression. Radiat Oncol 13:210

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ratan ZA, Zaman SB, Mehta V, Haidere MF, Runa NJ, Akter N (2017) Application of fluorescence in situ hybridization (FISH) technique for the detection of genetic aberration in medical science. Cureus 9(6):e1325

    PubMed  PubMed Central  Google Scholar 

  86. Nakato R, Sakata T (2020) Methods for ChIP-seq analysis: a practical workflow and advanced applications. Methods S1046–2023(20):30059–30061

    Google Scholar 

  87. Pachnis V, Belayew A, Tilghman SM (1984) Locus unlinked to alpha-fetoprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci USA 81:5523–5527

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Li S, Mason CE (2014) The pivotal regulatory landscape of RNA modifications. Annu Rev Genomics Hum Genet 15:127–150

    CAS  PubMed  Google Scholar 

  89. Li Y, Ye Y, Feng B, Qi Y (2017) Long noncoding RNA lncARSR promotes doxorubicin resistance in hepatocellular carcinoma via modulating PTENPI3K/Akt pathway. J Cell Biochem 118:4498–4507

    CAS  PubMed  Google Scholar 

  90. Li N, Feng XB, Tan Q, Luo P, Jing W, Zhu M, Liang C, Tu J, Ning Y (2017) Identification of circulating long noncoding RNA Linc00152 as a novel biomarker for diagnosis and monitoring of non-small-cell lung cancer. Dis Markers 2017:7439698

    PubMed  PubMed Central  Google Scholar 

  91. Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB et al (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43(Database issue):D168–D173

    CAS  PubMed  Google Scholar 

  92. Rinn JL, Euskirchen G, Bertone P, Martone R, Luscombe NM, Hartman S, Harrison PM, Nelson FK, Miller P, Gerstein M et al (2003) The transcriptional activity of human chromosome 22. Genes Dev 17:529–540

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rodriguez-Mateos P, Azevedo NF, Almeida C, Pamme N (2020) FISH and chips: a review of microfluidic platforms for FISH analysis. Med Microbiol Immunol 209(3):373–391

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Li N, Wang Y, Liu X, Luo P, Jing W, Zhu M, Tu J (2017) Identification of circulating long noncoding RNA HOTAIR as a novel biomarker for diagnosis and monitoring of non-small cell lung cancer. Technol Cancer Res Treat 16:1060–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Liang W, Lv T, Shi X, Liu H, Zhu Q, Zeng J, Yang W, Yin J, Song Y (2016) Circulating long noncoding RNA GAS5 is a novel biomarker for the diagnosis of nonsmall cell lung cancer. Medicine 95:e4608

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lim B, Lin Y, Navin N (2020) Advancing cancer research and medicine with single-cell genomics. Cancer Cell 37(4):456–470. https://doi.org/10.1016/j.ccell.2020.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Salgia R (2017) MET in lung cancer: biomarker selection based on scientific rationale. Mol Cancer Ther 16:555–565

    CAS  PubMed  Google Scholar 

  98. Santos RM, Moreno C, Zhang WC (2020) Non-coding RNAs in lung tumor initiation and progression. Int J Mol Sciences 21(8):2774

    CAS  Google Scholar 

  99. Sarnow P, Sagan SM (2016) Unraveling the mysterious interactions between hepatitis C virus RNA and liver-specific microRNA-122. Annu Rev Virol 3:309–332

    CAS  PubMed  Google Scholar 

  100. Schwind S, Maharry K, Radmacher MD, Mrozek K, Holland KB, Margeson D, Whitman SP, Hickey C, Becker H, Metzeler KH, Paschka P, Baldus CD, Liu S, Garzon R, Powell BL, Kolitz JE, Carroll AJ, Caligiuri MA, Larson RA, Marcucci G, Bloomfield CD (2010) Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 28(36):5257–5264

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Seca H, Lima RT, Almeida GM, Sobrinho-Simoes M, Bergantim R, Guimaraes JE, Vasconcelos MH (2014) Effect of miR-128 in DNA damage of HL-60 acute myeloid leukemia cells. Curr Pharm Biotechnol 15(5):492–502

    CAS  PubMed  Google Scholar 

  102. Liu F, Zheng K, Chen HC, Liu ZF (2018) Capping-RACE: a simple, accurate, and sensitive 5′ RACE method for use in prokaryotes. Nucleic Acids Res 46(21):e129

    PubMed  PubMed Central  Google Scholar 

  103. Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H et al (2009) MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci USA 106:12085–12090

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Shen H, Shen J, Wang L, Shi Z, Wang M, Jiang B-H, Shu Y (2015) Low miR-145 expression level is associated with poor pathological differentiation and poor prognosis in non-small cell lung cancer. Biomed Pharmacother 69:301–305

    CAS  PubMed  Google Scholar 

  105. Sia D, Villanueva A, Friedman SL, Llovet JM (2017) Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 152:745–761

    CAS  PubMed  Google Scholar 

  106. Slack FJ, Chinnaiyan AM (2019) The role of non-coding RNAs in oncology. Cell 179:1033–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20:631–656

    CAS  PubMed  Google Scholar 

  108. Wang S, Xiong H, Yan S, Wu N, Lu Z (2016) Identification and characterization of Epstein-Barr virus genomes in lung carcinoma biopsy samples by next-generation sequencing technology. Sci Rep 6:26156

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20:1732–1743

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Stenvold H, Donnem T, Andersen S, Al-Saad S, Busund L-T, Bremnes RM (2014) Stage and tissue-specific prognostic impact of miR-182 in NSCLC. BMC Cancer 14:138

    PubMed  PubMed Central  Google Scholar 

  111. Teixeira FK, Okuniewska M, Malone CD, Coux R-X, Rio DC, Lehmann R (2017) piRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature 552:268–272

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tomczak K, Czerwinska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19(1A):A68-77

    Google Scholar 

  113. Topol EJ (2019) High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25:44–56

    CAS  PubMed  Google Scholar 

  114. Van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey DL et al (2017) Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 18:1386–1396

    PubMed  Google Scholar 

  115. Vizzini A (2020) 5′ and 3′ RACE method to obtain full-length 5′ and 3′ ends of Ciona robusta macrophage migration inhibitory factors Mif1 and Mif2 cDNA. Methods Mol Biol 2080:223–235

    CAS  PubMed  Google Scholar 

  116. Wang H, Li Q, Tang S, Li M, Feng A, Qin L, Liu Z, Wang X (2017) The role of long noncoding RNA HOTAIR in the acquired multidrug resistance to imatinib in chronic myeloid leukemia cells. Hematology 22(4):208–216

    PubMed  Google Scholar 

  117. Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA, Mattick JS, Rinn JL (2011) Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol 30:99–104

    PubMed  PubMed Central  Google Scholar 

  118. Migliore C, Morando E, Ghiso E, Anastasi S, Leoni VP, Apicella M, Cora D, Sapino A, Pietrantonio F, De Braud F et al (2018) miR-205 mediates adaptive resistance to MET inhibition via ERRFI1 targeting and raised EGFR signaling. EMBO Mol Med 10:e8746

    PubMed  PubMed Central  Google Scholar 

  119. Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttinger L, Klay D, Weeber F, Huelsz-Prince G, Iakobachvili N, Amatngalim GD et al (2019) Long-term expanding human airway organoids or disease modeling. EMBO J 38:e100300

    PubMed  PubMed Central  Google Scholar 

  120. Xiao J, Lv Y, Jin F, Liu Y, Ma Y, Xiong Y et al (2017) Lncrna HANR promotes tumorigenesis and increase of chemoresistance in hepatocellular carcinoma. Cell Physiol Biochem 43:1926–1938

    CAS  PubMed  Google Scholar 

  121. Wei L, Wang X, Lv L, Liu J, Xing H, Song Y et al (2019) The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer 18:147

    PubMed  PubMed Central  Google Scholar 

  122. Runowicz CD, Leach CR, Henry NL, Henry KS, Mackey HT, Cowens-Alvarado RL et al (2016) American cancer society/American society of clinical oncology breast cancer survivorship care guideline. CA Cancer J Clin 66:43–73

    PubMed  Google Scholar 

Download references

Funding

This study was not funded by any authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satarupa Banerjee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Ganguly, N. & Banerjee, S. Exploring clinical implications and role of non-coding RNAs in lung carcinogenesis. Mol Biol Rep 49, 6871–6883 (2022). https://doi.org/10.1007/s11033-022-07159-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07159-w

Keywords

Navigation