Skip to main content
Log in

miR-4739 promotes epithelial-mesenchymal transition and angiogenesis in “driver gene-negative” non-small cell lung cancer via activating the Wnt/β-catenin signaling

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

“Driver gene-negative” non-small cell lung cancer (NSCLC) currently has no approved targeted drug, due to the lack of common actionable driver molecules. Even though miRNAs play crucial roles in various malignancies, their roles in “driver gene-negative” NSCLC keep unclear.

Methods

miRNA expression microarrays were utilized to screen miRNAs associated with “driver gene-negative” NSCLC malignant progression. Quantitative real-time PCR (RT-qPCR) and in situ hybridization (ISH) were employed to validate the expression of miR-4739, and its correlation with clinicopathological characteristics was analyzed in tumor specimens using univariate and multivariate analyses. The biological functions and underlying mechanisms of miR-4739 were investigated both in vitro and in vivo.

Results

our research demonstrated, for the first time, that miR-4739 was substantially increased in “driver gene-negative” NSCLC tumor tissues and cell lines, and overexpression of miR-4739 was related to clinical staging, metastasis, and unfavorable outcomes. Functional experiments discovered that miR-4739 dramatically enhanced tumor cell proliferation, migration, and metastasis by promoting the epithelial-to-mesenchymal transition (EMT). Meanwhile, miR-4739 can be transported from cancer cells to the site of vascular epithelial cells through exosomes, consequently facilitating the proliferation and migration of vascular epithelial cells and inducing angiogenesis. Mechanistically, miR-4739 can activate Wnt/β-catenin signaling both in tumor cells and vascular epithelial cells by targeting Wnt/β-catenin signaling antagonists APC2 and DKK3, respectively.

Conclusion

Our work identifies a valuable oncogene, miR-4739, that accelerates malignant progression in “driver gene-negative” NSCLC and serves as a potential therapeutic target for this group of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data sets generated during the study are available in the main text or supplementary materials. The raw data of miRNA and mRNA microarray were uploaded to the Gene Expression Omnibus (GEO) Database (GSE229301 and GSE229302, respectively). The data that support the findings of our study are available on request from the corresponding author (Neng Jiang).

Abbreviations

EMT:

epithelial-mesenchymal transition

NSCLC:

non-small cell lung cancer

ICIs:

immune checkpoint inhibitors

CTLA-4:

cytotoxic T-lymphocyte antigen 4

PD-1:

programmed cell death protein 1

PDL-1:

programmed cell death 1 ligand 1

FBS:

fetal bovine serum

NGS:

next-generation sequencing

HUVECs:

human umbilical vein endothelial cells

TVs:

tumor volumes

SD:

standard deviation

OS:

overall survival

CCK8:

cell Counting Kit-8

GSEA:

Gene Set Enrichment Analysis

MVD:

microvessel density

ISH:

in situ hybridization

IHC:

immunohistochemistry

IF:

immunofluorescence

EdU:

5-Ethynyl-2′-deoxyuridine

WB:

western blotting

RT-qPCR:

reverse transcription‑quantitative PCR

References

  1. N.S. Patil, B.Y. Nabet, S. Müller, H. Koeppen, W. Zou, J. Giltnane, A. Au-Yeung, S. Srivats, J.H. Cheng, C. Takahashi, P.E. de Almeida, A.S. Chitre, J.L. Grogan, L. Rangell, S. Jayakar, M. Peterson, A.W. Hsia, W.E. O’Gorman, M. Ballinger, R. Banchereau, D.S. Shames, Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer. Cancer Cell. 40, 289–300e284 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. S.R. Yang, A.M. Schultheis, H. Yu, D. Mandelker, M. Ladanyi, R. Büttner, Precision medicine in non-small cell lung cancer: current applications and future directions. Semin Cancer Biol. 84, 184–198 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. D.S. Hong, M.G. Fakih, J.H. Strickler, J. Desai, G.A. Durm, G.I. Shapiro, G.S. Falchook, T.J. Price, A. Sacher, C.S. Denlinger, Y.J. Bang, G.K. Dy, J.C. Krauss, Y. Kuboki, J.C. Kuo, A.L. Coveler, K. Park, T.W. Kim, F. Barlesi, P.N. Munster, S.S. Ramalingam, T.F. Burns, F. Meric-Bernstam, H. Henary, J. Ngang, G. Ngarmchamnanrith, J. Kim, B.E. Houk, J. Canon, J.R. Lipford, G. Friberg, P. Lito, R. Govindan, B.T. Li, KRAS(G12C) inhibition with Sotorasib in Advanced Solid Tumors. N Engl. J. Med. 383, 1207–1217 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Cui, W. Fang, C. Li, K. Tang, J. Zhang, Y. Lei, W. He, S. Peng, M. Kuang, H. Zhang, L. Chen, D. Xu, C. Tang, W. Zhang, Y. Zhu, W. Jiang, N. Jiang, Y. Sun, Y. Chen, H. Wang, Y. Lai, S. Li, Q. He, J. Zhou, Y. Zhang, M. Lin, H. Chen, C. Zhou, C. Wang, J. Wang, X. Zou, L. Wang, Z. Ke, Development and validation of a Novel signature to predict overall survival in “Driver Gene-negative” lung adenocarcinoma (LUAD): results of a Multicenter Study. Clin. Cancer Res. 25, 1546–1556 (2019)

    Article  PubMed  Google Scholar 

  5. Y. Chai, X. Wu, H. Bai, J. Duan, Combined immunotherapy with Chemotherapy versus Bevacizumab with Chemotherapy in First-Line treatment of driver-gene-negative non-squamous non-small cell Lung Cancer: an updated systematic review and network Meta-analysis, J. Clin. Med., 11, (2022)

  6. W.J. Liu, Y. Du, R. Wen, M. Yang, J. Xu, Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol. Ther. 206, 107438 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. N.H. Hanna, B.J. Schneider, S. Temin, S. Jr. Baker, J. Brahmer, P.M. Ellis, L.E. Gaspar, R.Y. Haddad, P.J. Hesketh, D. Jain, I. Jaiyesimi, D.H. Johnson, N.B. Leighl, T. Phillips, G.J. Riely, A.G. Robinson, R. Rosell, J.H. Schiller, N. Singh, D.R. Spigel, J.O. Stabler, J. Tashbar, G. Masters, Therapy for Stage IV Non-Small-Cell Lung Cancer without driver alterations: ASCO and OH (CCO) Joint Guideline Update. J. Clin. Oncol. 38, 1608–1632 (2020)

    Article  PubMed  Google Scholar 

  8. X. Si, R. Pan, S. Ma, L. Li, L. Liang, P. Zhang, Y. Chu, H. Wang, M. Wang, X. Zhang, L. Zhang, Genomic characteristics of driver genes in chinese patients with non-small cell lung cancer. Thorac. Cancer. 12, 357–363 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. J. Mazieres, A. Drilon, A. Lusque, L. Mhanna, A.B. Cortot, L. Mezquita, A.A. Thai, C. Mascaux, S. Couraud, R. Veillon, M. Van den Heuvel, J. Neal, N. Peled, M. Früh, T.L. Ng, V. Gounant, S. Popat, J. Diebold, J. Sabari, V.W. Zhu, S.I. Rothschild, P. Bironzo, A. Martinez-Marti, A. Curioni-Fontecedro, R. Rosell, M. Lattuca-Truc, M. Wiesweg, B. Besse, B. Solomon, F. Barlesi, R.D. Schouten, H. Wakelee, D.R. Camidge, G. Zalcman, S. Novello, S.I. Ou, J. Milia, O. Gautschi, Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann. Oncol. 30, 1321–1328 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Russano, A. Cortellini, R. Giusti, A. Russo, F. Zoratto, F. Rastelli, A. Gelibter, R. Chiari, O. Nigro, M. De Tursi, S. Bracarda, S. Gori, F. Grossi, M. Bersanelli, L. Calvetti, V. Di Noia, M. Scartozzi, M. Di Maio, P. Bossi, A. Falcone, F. Citarella, F. Pantano, C. Ficorella, M. Filetti, V. Adamo, E. Veltri, F. Pergolesi, M.A. Occhipinti, L. Nicolardi, A. Tuzi, P. Di Marino, S. Macrini, A. Inno, M. Ghidini, S. Buti, G. Aprile, E. Lai, M. Audisio, S. Intagliata, R. Marconcini, D. Brocco, G. Porzio, M. Piras, E. Rijavec, F. Simionato, C. Natoli, M. Tiseo, B. Vincenzi, G. Tonini, D. Santini, Clinical outcomes of NSCLC patients experiencing early immune-related adverse events to PD-1/PD-L1 checkpoint inhibitors leading to treatment discontinuation. Cancer Immunol. Immunother. 71, 865–874 (2022)

    Article  PubMed  Google Scholar 

  11. W.Y. Xia, W. Feng, C.C. Zhang, Y.J. Shen, Q. Zhang, W. Yu, X.W. Cai, X.L. Fu, Radiotherapy for non-small cell lung cancer in the immunotherapy era: the opportunity and challenge-a narrative review. Transl Lung Cancer Res. 9, 2120–2136 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. L. Khoja, D. Day, T. Wei-Wu, L.L. Chen, A.R. Siu, Hansen, Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann. Oncol. 28, 2377–2385 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. G. Kara, G.A. Calin, B. Ozpolat, RNAi-based therapeutics and tumor targeted delivery in cancer. Adv. Drug Deliv Rev. 182, 114113 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. N. Jiang, C. Zou, Y. Zhu, Y. Luo, L. Chen, Y. Lei, K. Tang, Y. Sun, W. Zhang, S. Li, Q. He, J. Zhou, Y. Chen, J. Luo, W. Jiang, Z. Ke, HIF-1ɑ-regulated miR-1275 maintains stem cell-like phenotypes and promotes the progression of LUAD by simultaneously activating Wnt/β-catenin and notch signaling. Theranostics. 10, 2553–2570 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A.A. Sayyed, P. Gondaliya, P. Bhat, M. Mali, N. Arya, A. Khairnar, K. Kalia, Role of miRNAs in Cancer Diagnostics and Therapy: a recent update. Curr. Pharm. Des. 28, 471–487 (2022)

    Article  CAS  PubMed  Google Scholar 

  16. L.F. Sempere, A.S. Azmi, A. Moore, microRNA-based diagnostic and therapeutic applications in cancer medicine. Wiley Interdiscip Rev RNA 12, e1662 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. K. Yamana, J. Inoue, R. Yoshida, J. Sakata, H. Nakashima, H. Arita, S. Kawaguchi, S. Gohara, Y. Nagao, H. Takeshita, M. Maeshiro, R. Liu, Y. Matsuoka, M. Hirayama, K. Kawahara, M. Nagata, A. Hirosue, R. Toya, R. Murakami, Y. Kuwahara, M. Fukumoto, H. Nakayama, Extracellular vesicles derived from radioresistant oral squamous cell carcinoma cells contribute to the acquisition of radioresistance via the mir-503-3p-BAK axis. J. Extracell. Vesicles. 10, e12169 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. L. Fang, J. Cai, B. Chen, S. Wu, R. Li, X. Xu, Y. Yang, H. Guan, X. Zhu, L. Zhang, J. Yuan, J. Wu, M. Li, Aberrantly expressed mir-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling. Nat. Commun. 6, 8640 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Zhang, X. Wang, Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 13, 165 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  20. A. Shams, R. Shabani, H. Asgari, M. Karimi, M. Najafi, M. Asghari-Jafarabadi, S.M. Razavi, S.R. Miri, M. Abbasi, A. Mohammadi, M. Koruji, In vitro elimination of EL4 cancer cells from spermatogonia stem cells by miRNA-143- and 206-loaded folic acid-conjugated PLGA nanoparticles. Nanomed. (Lond). 17, 531–545 (2022)

    Article  CAS  Google Scholar 

  21. W. Du, R.E. Menjivar, K.L. Donahue, P. Kadiyala, A. Velez-Delgado, K.L. Brown, H.R. Watkoske, X. He, E.S. Carpenter, C.V. Angeles, Y. Zhang, M. Pasca di Magliano, WNT signaling in the tumor microenvironment promotes immunosuppression in murine pancreatic cancer, J. Exp. Med., 220 (2023)

  22. J. Wang, H. Yu, W. Dong, C. Zhang, M. Hu, W. Ma, X. Jiang, H. Li, P. Yang, D. Xiang, M6A-mediated upregulation of FZD10 regulates liver cancer stem cells properties and lenvatinib resistance through WNT/β-catenin and Hippo signaling pathways, Gastroenterology, (2023)

  23. M.J. Parsons, T. Tammela, L.E. Dow, WNT as a driver and dependency in Cancer. Cancer Discov. 11, 2413–2429 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. F. Yu, C. Yu, F. Li, Y. Zuo, Y. Wang, L. Yao, C. Wu, C. Wang, L. Ye, Wnt/β-catenin signaling in cancers and targeted therapies. Signal. Transduct. Target. Ther. 6, 307 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H.B. Park, J.W. Kim, K.H. Baek, Regulation of wnt signaling through Ubiquitination and Deubiquitination in Cancers, Int. J. Mol. Sci., 21 (2020)

  26. D.J. Stewart, Wnt signaling pathway in non-small cell lung cancer. J. Natl. Cancer Inst. 106, djt356 (2014)

    Article  PubMed  Google Scholar 

  27. Z. Wu, W. Shi, C. Jiang, Overexpressing circular RNA hsa_circ_0002052 impairs osteosarcoma progression via inhibiting Wnt/β-catenin pathway by regulating miR-1205/APC2 axis. Biochem. Biophys. Res. Commun. 502, 465–471 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. W. Zhang, X. Ruan, Y. Li, J. Zhi, L. Hu, X. Hou, X. Shi, X. Wang, J. Wang, W. Ma, P. Gu, X. Zheng, M. Gao, KDM1A promotes thyroid cancer progression and maintains stemness through the Wnt/β-catenin signaling pathway. Theranostics. 12, 1500–1517 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. F. Yang, H. Xiong, L. Duan, Q. Li, X. Li, Y. Zhou, MiR-1246 promotes Metastasis and Invasion of A549 cells by targeting GSK-3β–Mediated Wnt/β-Catenin pathway. Cancer Res. Treat. 51, 1420–1429 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C.L. Busceti, S. Marchitti, F. Bianchi, P. Di Pietro, B. Riozzi, R. Stanzione, M. Cannella, G. Battaglia, V. Bruno, M. Volpe, F. Fornai, F. Nicoletti, S. Rubattu, Dickkopf-3 upregulates VEGF in cultured human endothelial cells by activating activin receptor-like kinase 1 (ALK1) pathway. Front. Pharmacol. 8, 111 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  31. M.H. Soheilifar, M. Pornour, M. Saidijam, R. Najafi, F. Azizi Jalilian, H. Keshmiri Neghab, R. Amini, miR-1290 contributes to oncogenesis and angiogenesis via targeting of THBS1, DKK3 and, SCAI, Bioimpacts, 12, 349–358 (2022)

  32. R. Kalluri, V.S. LeBleu, The biology, function, and biomedical applications of exosomes, Science, 367 (2020)

  33. W. Yu, J. Hurley, D. Roberts, S.K. Chakrabortty, D. Enderle, M. Noerholm, X.O. Breakefield, J.K. Skog, Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann. Oncol. 32, 466–477 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. Z. Zeng, Y. Li, Y. Pan, X. Lan, F. Song, J. Sun, K. Zhou, X. Liu, X. Ren, F. Wang, J. Hu, X. Zhu, W. Yang, W. Liao, G. Li, Y. Ding, L. Liang, Cancer-derived exosomal mir-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 9, 5395 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. L. He, W. Zhu, Q. Chen, Y. Yuan, Y. Wang, J. Wang, X. Wu, Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics. 9, 8206–8220 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. G. Kyriakopoulos, V. Katopodi, I. Skeparnias, E.G. Kaliatsi, K. Grafanaki, C. Stathopoulos, KRAS(G12C) can either promote or impair Cap-Dependent translation in two different lung Adenocarcinoma Cell Lines, Int. J. Mol. Sci., 22 (2021)

  37. Y. Zeng, X. Yao, X. Liu, X. He, L. Li, X. Liu, Z. Yan, J. Wu, B.M. Fu, Anti-angiogenesis triggers exosomes release from endothelial cells to promote tumor vasculogenesis. J. Extracell. Vesicles. 8, 1629865 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Y. Zhang, L. Zhou, Y. Xu, J. Zhou, T. Jiang, J. Wang, C. Li, X. Sun, H. Song, J. Song, Targeting SMYD2 inhibits angiogenesis and increases the efficiency of apatinib by suppressing EGFL7 in colorectal cancer. Angiogenesis. 26, 1–18 (2023)

    Article  PubMed  Google Scholar 

  39. K. Han, F.W. Wang, C.H. Cao, H. Ling, J.W. Chen, R.X. Chen, Z.H. Feng, J. Luo, X.H. Jin, J.L. Duan, S.M. Li, N.F. Ma, J.P. Yun, X.Y. Guan, Z.Z. Pan, P. Lan, R.H. Xu, D. Xie, CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Mol. Cancer. 19, 60 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A.W. Lambert, R.A. Weinberg, Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer. 21, 325–338 (2021)

    Article  CAS  PubMed  Google Scholar 

  41. P. Liu, Z. Wang, X. Ou, P. Wu, Y. Zhang, S. Wu, X. Xiao, Y. Li, F. Ye, H. Tang, The FUS/circEZH2/KLF5/ feedback loop contributes to CXCR4-induced liver metastasis of breast cancer by enhancing epithelial-mesenchymal transition. Mol. Cancer. 21, 198 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. K. Ono, C. Sogawa, H. Kawai, M.T. Tran, E.A. Taha, Y. Lu, M.W. Oo, Y. Okusha, H. Okamura, S. Ibaragi, M. Takigawa, K.I. Kozaki, H. Nagatsuka, A. Sasaki, K. Okamoto, S.K. Calderwood, T. Eguchi, Triple knockdown of CDC37, HSP90-alpha and HSP90-beta diminishes extracellular vesicles-driven malignancy events and macrophage M2 polarization in oral cancer. J. Extracell. Vesicles. 9, 1769373 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J.K. Min, H. Park, H.J. Choi, Y. Kim, B.J. Pyun, V. Agrawal, B.W. Song, J. Jeon, Y.S. Maeng, S.S. Rho, S. Shim, J.H. Chai, B.K. Koo, H.J. Hong, C.O. Yun, C. Choi, Y.M. Kim, K.C. Hwang, Y.G. Kwon, The WNT antagonist Dickkopf2 promotes angiogenesis in rodent and human endothelial cells. J. Clin. Invest. 121, 1882–1893 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. L. Jiang, M. Yin, X. Wei, J. Liu, X. Wang, C. Niu, X. Kang, J. Xu, Z. Zhou, S. Sun, X. Wang, X. Zheng, S. Duan, K. Yao, R. Qian, N. Sun, A. Chen, R. Wang, J. Zhang, S. Chen, D. Meng, Bach1 represses Wnt/β-Catenin signaling and angiogenesis. Circ. Res. 117, 364–375 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. P.P. Wong, J.M. Muñoz-Félix, M. Hijazi, H. Kim, S.D. Robinson, B. De Luxán-Delgado, I. Rodríguez-Hernández, O. Maiques, Y.M. Meng, Q. Meng, N. Bodrug, M.S. Dukinfield, L.E. Reynolds, G. Elia, A. Clear, C. Harwood, Y. Wang, J.J. Campbell, R. Singh, P. Zhang, T.J. Schall, K.P. Matchett, N.C. Henderson, P.W. Szlosarek, S.A. Dreger, S. Smith, J.L. Jones, J.G. Gribben, P.R. Cutillas, P. Meier, V. Sanz-Moreno, K.M. Hodivala-Dilke, Cancer Burden is controlled by Mural Cell-β3-Integrin regulated crosstalk with Tumor cells, cell, 181, 1346–1363e1321 (2020)

  46. Y. Jia, T. Qin, X. Zhang, S. Liu, Z. Liu, C. Zhang, J. Wang, K. Li, Effect of bevacizumab on the tight junction proteins of vascular endothelial cells. Am. J. Transl Res. 11, 5546–5559 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. H. Wang, Q. Deng, Z. Lv, Y. Ling, X. Hou, Z. Chen, X. Dinglin, S. Ma, D. Li, Y. Wu, Y. Peng, H. Huang, L. Chen, N6-methyladenosine induced mir-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol. Cancer. 18, 181 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. L. Liu, M. Gu, J. Ma, Y. Wang, M. Li, H. Wang, X. Yin, X. Li, CircGPR137B/miR-4739/FTO feedback loop suppresses tumorigenesis and metastasis of hepatocellular carcinoma. Mol. Cancer. 21, 149 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. X. Wang, Q. Chen, X. Wang, W. Li, G. Yu, Z. Zhu, W. Zhang, ZEB1 activated-VPS9D1-AS1 promotes the tumorigenesis and progression of prostate cancer by sponging miR-4739 to upregulate MEF2D. Biomed. Pharmacother. 122, 109557 (2020)

    Article  CAS  PubMed  Google Scholar 

  50. K. Wu, Z. Liu, C. Dong, S. Gu, L. Li, W. Wang, Y. Zhou, MiR-4739 inhibits the malignant behavior of esophageal squamous cell carcinoma cells via the homeobox C10/vascular endothelial growth factor A/phosphatidylinositol 3-kinase/AKT pathway. Bioengineered. 13, 14066–14079 (2022)

    Article  PubMed  Google Scholar 

  51. C.X. Liu, X. Li, F. Nan, S. Jiang, X. Gao, S.K. Guo, W. Xue, Y. Cui, K. Dong, H. Ding, B. Qu, Z. Zhou, N. Shen, L. Yang, L.L. Chen, Structure and degradation of circular RNAs regulate PKR activation in Innate Immunity. Cell. 177, 865–880e821 (2019)

    Article  CAS  PubMed  Google Scholar 

  52. M. Correia de Sousa, M. Gjorgjieva, D. Dolicka, C. Sobolewski, M. Foti, Deciphering miRNAs’ Action through miRNA Editing, Int. J. Mol. Sci., 20 (2019)

  53. S. Zhao, Y. Mi, B. Zheng, P. Wei, Y. Gu, Z. Zhang, Y. Xu, S. Cai, X. Li, D. Li, Highly-metastatic colorectal cancer cell released miR-181a-5p-rich extracellular vesicles promote liver metastasis by activating hepatic stellate cells and remodelling the tumour microenvironment. J. Extracell. Vesicles. 11, e12186 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. M. Qiao, T. Jiang, X. Liu, S. Mao, F. Zhou, X. Li, C. Zhao, X. Chen, C. Su, S. Ren, C. Zhou, Immune checkpoint inhibitors in EGFR-Mutated NSCLC: Dusk or Dawn? J. Thorac. Oncol. 16, 1267–1288 (2021)

    Article  CAS  PubMed  Google Scholar 

  55. E.D. Agerschou, P. Flagmeier, T. Saridaki, C. Galvagnion, D. Komnig, L. Heid, V. Prasad, H. Shaykhalishahi, D. Willbold, C.M. Dobson, A. Voigt, B. Falkenburger, W. Hoyer, A.K. Buell, An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils, Elife, 8 (2019)

  56. V.S. LeBleu, J.P. Thiery, The Continuing search for causality between epithelial-to-mesenchymal transition and the metastatic fitness of Carcinoma cells. Cancer Res. 82, 1467–1469 (2022)

    Article  CAS  PubMed  Google Scholar 

  57. N. Mohammadi Ghahhari, M.K. Sznurkowska, N. Hulo, L. Bernasconi, N. Aceto, D. Picard, Cooperative interaction between ERα and the EMT-inducer ZEB1 reprograms breast cancer cells for bone metastasis. Nat. Commun. 13, 2104 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Y.D. Zhao, M. Muhetaerjiang, H.W. An, X. Fang, Y. Zhao, H. Wang, Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials. 268, 120552 (2021)

    Article  CAS  PubMed  Google Scholar 

  59. C.S. Blaha, G. Ramakrishnan, S.M. Jeon, V. Nogueira, H. Rho, S. Kang, P. Bhaskar, A.R. Terry, A.F. Aissa, M.V. Frolov, K.C. Patra, R. Brooks Robey, N. Hay, A non-catalytic scaffolding activity of hexokinase 2 contributes to EMT and metastasis. Nat. Commun. 13, 899 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. J. An, Y. Du, X. Fan, Y. Wang, C. Ivan, X.G. Zhang, A.K. Sood, Z. An, N. Zhang, EGFL6 promotes breast cancer by simultaneously enhancing cancer cell metastasis and stimulating tumor angiogenesis. Oncogene. 38, 2123–2134 (2019)

    Article  CAS  PubMed  Google Scholar 

  61. X. Liu, S. Tan, H. Liu, J. Jiang, X. Wang, L. Li, B. Wu, Hepatocyte-derived MASP1-enriched small extracellular vesicles activate HSCs to promote liver fibrosis, Hepatology, (2022)

  62. A.J. Cooper, L.V. Sequist, J.J. Lin, Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat. Rev. Clin. Oncol. 19, 499–514 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. K. Tang, N. Jiang, Y. Kuang, Q. He, S. Li, J. Luo, W. Jiang, Y. Chen, Y. Sun, L. Chen, Y. Chen, J. Zhu, Y. Cui, H. Wan, Z. Ke, Overcoming T790M mutant small cell lung cancer with the third-generation EGFR-TKI osimertinib. Thorac. Cancer. 10, 359–364 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank the State Key Laboratory of Oncology in South China (Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China) for providing guidance and technical assistance in the study.

Funding

This research was supported by the National Nature Science Foundation of China (Nos. 82103271) and the Guangdong Basic and Applied Basic Research Foundation (Nos. 2023A04J2126).

Author information

Authors and Affiliations

Authors

Contributions

N.J. and Y. L. designed the manuscript, analyzed the data, and wrote the manuscript. Y.L., W.C., W.Z., Q.Y., M.M., Y.S., and Q.H. collected patient samples, performed experiments, and analyzed the data. N.J. provided financial support. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Yaobin Lin or Neng Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All research adhered to the tenets of the Declaration of Helsinki. The Ethics Committee of Sun Yat-Sen University Cancer Center approved this study.

Consent for publication

Patients signed informed consent regarding publishing their data and photographs.

Informed consent

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wenjian Cen, Qin Yan and Wenpeng Zhou have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, W., Yan, Q., Zhou, W. et al. miR-4739 promotes epithelial-mesenchymal transition and angiogenesis in “driver gene-negative” non-small cell lung cancer via activating the Wnt/β-catenin signaling. Cell Oncol. 46, 1821–1835 (2023). https://doi.org/10.1007/s13402-023-00848-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00848-z

Keywords

Navigation