Skip to main content

Advertisement

Log in

Inhibition of autophagy enhances DENSpm-induced apoptosis in human colon cancer cells in a p53 independent manner

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

One of the recently developed polyamine (PA) analogues, N1,N11-diethylnorspermine (DENSpm), has been found to act as an apoptotic inducer in melanoma, breast, prostate and colon cancer cells. Also, its potential to induce autophagy has been established. Unfolded protein responses and starvation of amino acids are known to trigger autophagy. As yet, however, the molecular mechanism underlying PA deficiency-induced autophagy is not fully clarified. Here, we aimed to determine the apoptotic effect of DENSpm after autophagy inhibition by 3-methyladenine (3-MA) or siRNA-mediated Beclin-1 silencing in colon cancer cells.

Methods

The apoptotic effects of DENSpm after 3-MA treatment or Beclin-1 silencing were determined by PI and AnnexinV/PI staining in conjunction with flow cytometry. Intracellular PA levels were measured by HPLC, whereas autophagy and the expression profiles of PA key players were determined in HCT116, SW480 and HT29 colon cancer cells by Western blotting.

Results

We found that DENSpm-induced autophagy was inhibited by 3-MA treatment and Beclin-1 silencing, and that apoptotic cell death was increased by PA depletion and spermidine/spermine N1-acetyltransferase (SSAT) upregulation. We also found that autophagy inhibition led to DENSpm-induced apoptosis through Atg5 down-regulation, p62 degradation and LC3 lipidation in both HCT116 and SW480 cells. p53 deficiency did not alter the response of the colon cancer cells to DENSpm-induced apoptotic cell death under autophagy suppression conditions.

Conclusions

From our results we conclude that DENSpm-induced apoptotic cell death is increased when autophagy is inhibited by 3-MA or Beclin-1 siRNA through PA depletion and PA catabolic activation in colon cancer cells, regardless p53 mutation status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: DENSpm-induced apoptotic cell death is increased by 3-MA pre-treatment in colon cancer cells.
Fig. 2: Effect of 3-MA on DENSpm-induced cell viability, cell death and mitochondrial membrane potential.
Fig. 3: Increased effect of 3-MA pre-treatment on DENSpm-induced cell cycle arrest and apoptotic cell death.
Fig. 5
Fig. 6: Involvement of PA in DENSpm-induced apoptotic cell death under Beclin-1 silencing conditions in colon cancer cells.
Fig. 7: Role of p53 in DENSpm-induced autophagy under autophagy inhibition conditions.
Fig. 8: Modulation of DENSpm-induced cell viability loss, cell cycle arrest and apoptotic cell death under autophagy inhibition conditions in p53 deficient HCT116 and p53 null HT29 cells.
Fig. 9: Autophagy inhibition triggers DENSpm-induced PA depletion by activating PA catabolic enzymes in a p53 dependent manner in colon cancer cells.

Similar content being viewed by others

Abbreviations

AO:

Acridine Orange

AZI:

Antizyme Inhibitor

BENSpm:

N1,N11-bis (ethyl) norspermine

BH:

Bcl-2 homology

CHENSpm:

N1-ethyl-N11-((cycloheptyl) methyl)-4,8-diazaundecane

DiOC6 :

3,3′-Dihexyloxacarbocyanine Iodide

DENSpm:

N1,N11-diethylnorspermine

DMSO:

Dimethylsulfoxide

GFP:

Green Fluorescence Protein

MDC:

Monodansyl Cadaverin

MTT:

3–4,5-Dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide

ODC:

Ornithine Decarboxylase

PAO:

Polyamine Oxidase

PBS:

Phosphate-buffered saline

PI:

Propidium Iodide

Put:

Putrescine

PVDF:

Polyvinyldifluoride

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

Spd:

Spermidine

Spm:

Spermine

SSAT:

Spermidine/spermine N1-acetyltransferase

TBS:

Tris-buffered saline

References

  1. K. Igarashi, K. Kashiwagi, Polyamines: Mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 271, 559–564 (2000). https://doi.org/10.1006/bbrc.2000.2601

    Article  PubMed  CAS  Google Scholar 

  2. A.E. Pegg, Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 48, 759–774 (1988)

    PubMed  CAS  Google Scholar 

  3. N.H. Saab, E.E. West, N.C. Bieszk, C.V. Preuss, A.R. Mank, R.A. Casero Jr., P.M. Woster, Synthesis and evaluation of unsymmetrically substituted polyamine analogues as modulators of human spermidine/spermine-N1-acetyltransferase (SSAT) and as potential antitumor agents. J. Med. Chem. 36, 2998–3004 (1993). https://doi.org/10.1021/jm00072a020

  4. H.C. Ha, P.M. Woster, J.D. Yager, R.A. Casero Jr., The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proc. Natl. Acad. Sci. USA 94, 11557–11562 (1997). https://doi.org/10.1073/pnas.94.21.11557

  5. D.L. Kramer, S. Vujcic, P. Diegelman, J. Alderfer, J.T. Miller, J.D. Black, R.J. Bergeron, C.W. Porter, Polyamine analogue induction of the p53-p21WAF1/CIP1-Rb pathway and G1 arrest in human melanoma cells. Cancer Res. 59, 1278–1286 (1999)

    PubMed  CAS  Google Scholar 

  6. Y. Chen, D.L. Kramer, P. Diegelman, S. Vujcic, C.W. Porter, Apoptotic signalling in polyamine analogue-treated SK-MEL-28 human melanoma cells. Cancer Res. 61, 6437–6644 (2001)

    PubMed  CAS  Google Scholar 

  7. G.P. Zagaja, M. Shrivastav, M.J. Fleig, L.J. Marton, C.W. Rinker-Schaeffer, M.E. Dolan, Effects of polyamine analogues on prostatic adenocarcinoma cells in vitro and in vivo. Cancer Chemother. Pharmacol. 41, 505–512 (1998). https://doi.org/10.1007/s002800050774

    Article  PubMed  CAS  Google Scholar 

  8. C. Hegardt, O.T. Johannsson, S.M. Oredsson, Rapid caspase-dependent cell death in cultured human breast cancer cells induced by the polyamine analogue N(1),N(11)-diethylnorspermine. Eur. J. Biochem. 269, 1033–1039 (2002). https://doi.org/10.1046/j.0014-2956.2001.02744.x

    Article  PubMed  CAS  Google Scholar 

  9. H.A. Hahm, D.S. Ettinger, K. Bowling, B. Hoker, T.L. Chen, Y. Zabelina, R.A. Casero Jr., Phase I study of N(1),N(11)-diethylnorspermine in patients with non-small cell lung cancer. Clin. Cancer Res. 8, 684–690 (2002)

    PubMed  CAS  Google Scholar 

  10. A.C. Wolff, D.K. Armstrong, J.H. Fetting, M.K. Carducci, C.D. Riley, J.F. Bender, R.A. Casero, N.E. Davidson, A. Phase II, Study of the polyamine analog N1,N11-diethylnorspermine (DENSpm) daily for five days every 21 days in patients with previously treated metastatic breast cancer. Clin. Cancer Res. 9, 5922–5928 (2003)

    PubMed  CAS  Google Scholar 

  11. R.G. Schipper, G. Deli, P. Deloyer, W.P. Lange, J.A. Schalken, A.A. Verhofstad, Antitumor activity of the polyamine analog N(1), N(11)-diethylnorspermine against human prostate carcinoma cells. Prostate 44, 313–321 (2000). https://doi.org/10.1002/1097-0045(20000901)44:4<313::AID-PROS8>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  12. S. Hector, C.W. Porter, D.L. Kramer, K. Clark, J. Prey, N. Kisiel, P. Diegelman, Y. Chen, L. Pendyala, Polyamine catabolism in platinum drug action: Interactions between oxaliplatin and the polyamine analogue N1,N11-diethylnorspermine at the level of spermidine/spermine N1-acetyltransferase. Mol. Cancer Ther. 3, 813–822 (2004)

  13. W.L. Allen, E.G. McLean, J. Boyer, A. McCulla, P.M. Wilson, V. Coley, D.B. Longley, R.A. Casero, Jr., P.G. Johnston, The role of spermidine/spermine N1-acetyltransferase in determining response to chemotherapeutic agents in colorectal cancer cells. Mol. Cancer Ther. 6, 128–137 (2007). https://doi.org/10.1158/1535-7163.MCT-06-0303

  14. Z. Akyol, A. Coker-Gurkan, E.D. Arisan, P. Obakan-Yerlikaya, N. Palavan-Unsal, DENSpm overcame Bcl-2 mediated resistance against paclitaxel treatment in MCF-7 breast cancer cells via activating polyamine catabolic machinery. Biomed. Pharmacother. 84, 2029–2041 (2016). https://doi.org/10.1016/j.biopha.2016.11.016

    Article  PubMed  CAS  Google Scholar 

  15. A. Coker-Gurkan, E.D. Arisan, P. Obakan-Yerlikaya, N. Palavan-Unsal, Lack of functional p53 renders DENSpm-induced autophagy and apoptosis in time dependent manner in colon cancer cells. Amino Acids 47, 87–100 (2015). https://doi.org/10.1007/s00726-014-1851-7

    Article  PubMed  CAS  Google Scholar 

  16. N. Mizushima, Physiological functions of autophagy. Curr. Top. Microbiol. Immunol. 335, 71–84 (2009). https://doi.org/10.1007/978-3-642-00302-8_3

  17. W. Khaodee, N. Inboot, S. Udomsom, W. Kumsaiyai, R. Cressey, Glucosidase II beta subunit (GluIIβ) plays a role in autophagy and apoptosis regulation in lung carcinoma cells in a p53-dependent manner. Cell. Oncol. 40, 579–591 (2017). https://doi.org/10.1007/s13402-017-0349-1

  18. S. Das, A. Nayak, S. Siddharth, D. Nayak, S. Narayan, C.N. Kundu, TRAIL enhances quinacrine-mediated apoptosis in breast cancer cells through induction of autophagy via modulation of p21 and DR5 interactions. Cell. Oncol. 40, 593–607 (2017). https://doi.org/10.1007/s13402-017-0347-3

  19. Z. Yang, D.J. Klionsky, An overview of the molecular mechanism of autophagy. Curr Top Microbiol. Immunol. 335, 1–32 (2009). https://doi.org/10.1007/978-3-642-00302-8_1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. S. Pattingre, B. Levine, Bcl-2 inhibition of autophagy: A new route to cancer. Cancer Res. 66, 2885–2888 (2006). https://doi.org/10.1158/0008-5472.CAN-05-4412

  21. W.Y. Choi, E.W. Gerner, L. Ramdas, J. Dupart, J. Carew, L. Proctor, P. Huang, W. Zhang, S.R. Hamilton, Combination of 5-fluorouracil and N-1,N-11-diethylnorspermine markedly activates spermidine/spermine N-1-acetyltransferase expression, depletes polyamines, and synergistically induces apoptosis in colon carcinoma. J. Biol. Chem. 280, 3295–3304 (2005). https://doi.org/10.1074/jbc.M409930200

    Article  PubMed  CAS  Google Scholar 

  22. R. Tummala, P. Diegelman, S.M. Fiuza, L.A.E.B. De Carvalho, M.P.M. Marques, D.L. Kramer, K. Clark, S. Vujcic, C.W. Porter, L. Pendyala, Characterization of Pt-, Pd-spermine complexes for their effect on polyamine pathway and cisplatin resistance in A2780 ovarian carcinoma cells. Oncology Rep. 24, 15–24 (2010)

    CAS  Google Scholar 

  23. Z.P. Xie, D.J. Klionsky, Autophagosome formation: Core machinery and adaptations. Nature Cell Biol. 9, 1102–1109 (2007)

    Article  PubMed  CAS  Google Scholar 

  24. E. Morselli, E. Tasdemir, M.C. Maiuri, L. Galluzzi, O. Kepp, A. Criollo, J.M. Vicencio, T. Soussi, G. Kroemer, Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 7, 3056–3061 (2008). https://doi.org/10.4161/cc.7.19.6751

    Article  PubMed  CAS  Google Scholar 

  25. E. Kim, A. Giese, W. Deppert, Wild-type p53 in cancer cells: When a guardian turns into a blackguard. Biochem. Pharmacol. 77, 11–20 (2009). https://doi.org/10.1016/j.bcp.2008.08.030

    Article  PubMed  CAS  Google Scholar 

  26. A. Pledgie-Tracy, M. Billam, A. Hacker, M.D. Sobolewski, P.M. Woster, Z. Zhang, R.A. Casero, N.E. Davidson, The role of the polyamine catabolic enzymes SSAT and SMO in the synergistic effects of standard chemotherapeutic agents with a polyamine analogue in human breast cancer cell lines. Cancer Chemother. Pharmacol. 65, 1067–1081 (2010). https://doi.org/10.1007/s00280-009-1112-8

    Article  PubMed  CAS  Google Scholar 

  27. H.M. Wallace, A.V. Fraser, A. Hughes, A perspective of polyamine metabolism. Biochem J. 376, 1–14 (2003). https://doi.org/10.1042/bj20031327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Y. Chen, D.L. Kramer, F. Li, C.W. Porter, Loss of inhibitor of apoptosis proteins as a determinant of polyamine analogue-induced apoptosis in human melanoma cells. Oncogene 22, 4964–4972 (2003). https://doi.org/10.1038/sj.onc.1206725

    Article  PubMed  CAS  Google Scholar 

  29. D.E. McCloskey, J. Yang, P.M. Woster, N.E. Davidson, R.A. Casero, Jr., Polyamine analogue induction of programmed cell death in human lung tumor cells. Clin. Cancer Res. 2, 441–446 (1996)

  30. S.M. Oredsson, K, Alm, E. Dahlberg, C.M. Holst, V.M. Johansson, L. Myhre, E. Soderstjerna, inhibition of cell proliferation and induction of apoptosis by N(1),N(11)-diethylnorspermine-induced polyamine pool reduction. Biochem. Soc. Trans. 35, 405–409 (2007). https://doi.org/10.1042/BST0350405

  31. B.K. Chang, Y. Liang, D.W. Miller, R.J. Bergeron, C.W. Porter, G. Wang, Effects of diethyl spermine analogues in human bladder cancer cell lines in culture. J. Urol. 150, 1293–1297 (1993). https://doi.org/10.1016/S0022-5347(17)35763-4

  32. C.W. Porter, B. Ganis, P.R. Libby, R.J. Bergeron, Correlations between polyamine analogue-induced increases in spermidine/spermine N1-acetyltransferase activity, polyamine pool depletion, and growth inhibition in human melanoma cell lines. Cancer Res. 51, 3715–3720 (1991)

  33. D.E. McCloskey, A.E. Pegg, Altered spermidine/spermine N1-acetyltransferase activity as a mechanism of cellular resistance to bis (ethyl) polyamine analogues. J. Biol. Chem. 275, 28708–28714 (2000). https://doi.org/10.1074/jbc.M004120200

  34. S. Sinha, B. Levine, The autophagy effector Beclin 1: A novel BH3-only protein. Oncogene 27, 137–148 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of TURKEY [(TUBITAK), Grant Number; 212T227] and the Istanbul Kultur University Scientific Projects Support Center. We are thankful to Esin Guvenir, Merve Karatas and Derya Bulut for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajda Coker Gurkan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurkan, A.C., Arisan, E.D., Yerlikaya, P.O. et al. Inhibition of autophagy enhances DENSpm-induced apoptosis in human colon cancer cells in a p53 independent manner. Cell Oncol. 41, 297–317 (2018). https://doi.org/10.1007/s13402-017-0369-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-017-0369-x

Keywords

Navigation