Skip to main content
Log in

Comparative Study of Three Chemical Pretreatments and Their Effects on the Structural Changes of Rice Straw and Butanol Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, the optimal conditions for the ionic liquid pretreatment of rice straw by microwave irradiation was identified by Response Surface Methodology (RSM). The maximum level of sugar concentration of 19.59 g/L was derived when rice straw was pretreated at 162 °C for 48 min and further hydrolyzed by enzymatic saccharification. The comparison of chemical pretreatment was performed using ionic liquid, alkaline, and acid to evaluate the effectiveness and effect structural changes of rice straw. Nevertheless, the total sugar yield from this ionic liquid pretreatment was 13% lower than alkaline (NaOH) pretreatment. All hydrolysates from chemical pretreatment were subjected for use as a culture medium for Clostridium beijerinckii TISTR 1461 in acetone–butanol–ethanol (ABE) fermentation. The results suggested that residue ionic liquid affects microbial growth, so a detoxification step was cautiously considered. Additionally, using hydrolysate of the rice straw pretreated by NaOH as a substrate, isobutyraldehyde was found in the fermentation broth, suggesting that C. beijerinckii TISTR 1461 can produce isobutanol in proper conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100(1), 10–18 (2009). https://doi.org/10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  2. Abdehagh, N., Tezel, F.H., Thibault, J.: Separation techniques in butanol production: challenges and developments. Biomass Bioenerg. 60, 222–246 (2014). https://doi.org/10.1016/j.biombioe.2013.10.003

    Article  Google Scholar 

  3. Green, E.M.: Fermentative production of butanol-the industrial perspective. Curr. Opin. Biotechnol. 22(3), 337–343 (2011). https://doi.org/10.1016/j.copbio.2011.02.004

    Article  Google Scholar 

  4. Jones, D.T., Woods, D.R.: Acetone–butanol fermentation revisited. Microbiol. Rev. 50(4), 484–524 (1986)

    Google Scholar 

  5. Karimi, K., Tabatabaei, M., Horvath, I.S., Kumar, R.: Recent trends in acetone, butanol, and ethanol (ABE) production. Biofuel Res. J. 2(4), 301–308 (2015). https://doi.org/10.18331/Brj2015.2.4.4

    Article  Google Scholar 

  6. Ranjan, A., Moholkar, V.S.: Biobutanol: science, engineering, and economics. Int. J. Energy Res. 36(3), 277–323 (2012). https://doi.org/10.1002/er.1948

    Article  Google Scholar 

  7. Lindman, B., Karlström, G., Stigsson, L.: On the mechanism of dissolution of cellulose. J. Mol. Liq. 156(1), 76–81 (2010). https://doi.org/10.1016/j.molliq.2010.04.016

    Article  Google Scholar 

  8. Barr, C.J., Hanson, B.L., Click, K., Perrotta, G., Schall, C.A.: Influence of ionic-liquid incubation temperature on changes in cellulose structure, biomass composition, and enzymatic digestibility. Cellulose. 21(2), 973–982 (2014). https://doi.org/10.1007/s10570-013-0052-y

    Article  Google Scholar 

  9. Haykir, N.I., Bahcegul, E., Bicak, N., Bakir, U.: Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility. Ind. Crop. Prod. 41(1), 430–436 (2013). https://doi.org/10.1016/j.indcrop.2012.04.041

    Article  Google Scholar 

  10. Yoon, L.W., Ngoh, G.C., May Chua, A.S., Hashim, M.A.: Comparison of ionic liquid, acid and alkali pretreatments for sugarcane bagasse enzymatic saccharification. J. Chem. Technol. Biotechnol. 86(10), 1342–1348 (2011). https://doi.org/10.1002/jctb.2651

    Article  Google Scholar 

  11. Katinonkul, W., Lee, J.-S., Ha, S.H., Park, J.-Y.: Enhancement of enzymatic digestibility of oil palm empty fruit bunch by ionic-liquid pretreatment. Energy. 47(1), 11–16 (2012). https://doi.org/10.1016/j.energy.2012.06.050

    Article  Google Scholar 

  12. Nguyen, T.A.D., Kim, K.R., Han, S.J., Cho, H.Y., Kim, J.W., Park, S.M., Park, J.C., Sim, S.J.: Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour. Technol. 101(19), 7432–7438 (2010). https://doi.org/10.1016/j.biortech.2010.04.053

    Article  Google Scholar 

  13. Lee, S.H., Doherty, T.V., Linhardt, R.J., Dordick, J.S.: Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 102(5), 1368–1376 (2009). https://doi.org/10.1002/bit.22179

    Article  Google Scholar 

  14. Fu, D., Mazza, G.: Optimization of processing conditions for the pretreatment of wheat straw using aqueous ionic liquid. Bioresour. Technol. 102(17), 8003–8010 (2011). https://doi.org/10.1016/j.biortech.2011.06.023

    Article  Google Scholar 

  15. Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R.K., Pandey, A.: Bioethanol production from rice straw: an overview. Bioresour. Technol. 101(13), 4767–4774 (2010). https://doi.org/10.1016/j.biortech.2009.10.079

    Article  Google Scholar 

  16. Ha, S.H., Mai, N.L., An, G., Koo, Y.M.: Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresour. Technol. 102(2), 1214–1219 (2011). https://doi.org/10.1016/j.biortech.2010.07.108

    Article  Google Scholar 

  17. Cheng, J., Su, H., Zhou, J., Song, W., Cen, K.: Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. Int. J. Hydrogen Energy. 36(3), 2093–2101 (2011). https://doi.org/10.1016/j.ijhydene.2010.11.021

    Article  Google Scholar 

  18. Ravoof, S.A., Pratheepa, K., Supassri, T., Chittibabu, S.: Enhancing enzymatic hydrolysis of rice straw using microwave assisted nitric acid pretreatment. Int. J. Med. Biosci. 1(3), 13–17 (2012)

    Google Scholar 

  19. Boonsombuti, A., Luengnaruemitchai, A., Wongkasemjit, S.: Effect of phosphoric acid pretreatment of corncobs on the fermentability of Clostridium beijerinckii TISTR 1461 for biobutanol production. Prep. Biochem. Biotechnol. 45(2), 173–191 (2015). https://doi.org/10.1080/10826068.2014.907179

    Article  Google Scholar 

  20. Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A.: Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76(5), 965–977 (2008). https://doi.org/10.1016/j.talanta.2008.05.019

    Article  Google Scholar 

  21. Development Core Team, R.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. (2016). https://doi.org/10.1007/978-3-540-74686-7

  22. Qureshi, N., Blaschek, H.P.: Butanol recovery from model solution/fermentation broth by pervaporation: evaluation of membrane performance. Biomass Bioenergy. 17(2), 175–184 (1999). https://doi.org/10.1016/S0961-9534(99)00030-6

    Article  Google Scholar 

  23. Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583–3597 (1991). https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  24. Segal, L., Creely, J.J., Martin, aE., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29(10), 786–794 (1959). https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  25. Nelson, M.L., O’Connor, R.T.: Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J. Appl. Polym. Sci. 8(3), 1325–1341 (1964). https://doi.org/10.1002/app.1964.070080323

    Article  Google Scholar 

  26. Boonsombuti, A., Komolpis, K., Luengnaruemitchai, A., Wongkasemjit, S.: Enhancement of ABE fermentation through regulation of ammonium acetate and D-xylose uptake from acid-pretreated corncobs. Ann. Microbiol. 64(2), 431–439 (2014). https://doi.org/10.1007/s13213-013-0673-2

    Article  Google Scholar 

  27. Zhu, Z.Y., Simister, R., Bird, S., McQueen-Mason, S.J., Gomez, L.D., Macquarrie, D.J.: Microwave assisted acid and alkali pretreatment of Miscanthus biomass for biorefineries. AIMS Bioeng. 2(4), 449–468 (2015). https://doi.org/10.3934/bioeng.2015.4.449

    Article  Google Scholar 

  28. Zhu, Z.Y., Rezende, C.A., Simister, R., McQueen-Mason, S.J., Macquarrie, D.J., Polikarpov, I., Gomez, L.D.: Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenergy 93, 269–278 (2016). https://doi.org/10.1016/j.biombioe.2016.06.017

    Article  Google Scholar 

  29. Darji, D., Alias, Y., Som, F.M., Abd Razak, N.H.: Microwave heating and hydrolysis of rubber wood biomass in ionic liquids. J. Chem. Technol. Biotechnol. 90(11), 2050–2056 (2015). https://doi.org/10.1002/jctb.4516

    Article  Google Scholar 

  30. Castro, M.C., Rodriguez, H., Arce, A., Soto, A.: Mixtures of ethanol and the ionic liquid 1-ethyl-3-methylimidazolium acetate for the fractionated solubility of biopolymers of lignocellulosic biomass. Ind. Eng. Chem. Res. 53(29), 11850–11861 (2014). https://doi.org/10.1021/ie501956x

    Article  Google Scholar 

  31. Hou, Q.D., Ju, M.T., Li, W.Z., Liu, L., Chen, Y., Yang, Q.: Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules. 22(3), 490 (2017)

    Article  Google Scholar 

  32. Chandel, A.K., Antunes, F.F.a., Anjos, V., Bell, M.J.V., Rodrigues, L.N., Singh, O.V., Rosa, C.A., Pagnocca, F.C., da Silva, S.S.: Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae. Biotechnol. Biofuels. 6(1), 4–4 (2013). https://doi.org/10.1186/1754-6834-6-4

    Article  Google Scholar 

  33. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K.: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels. 3(1), 10–10 (2010). https://doi.org/10.1186/1754-6834-3-10

    Article  Google Scholar 

  34. Kim, S., Lee, S., Lee, J., Jung, Y., Thapa, L., Kim, J., Um, Y., Park, C., Kim, S., Alvira, P., Tomas-Pejo, E., Ballesteros, M., Negro, M.J., Fukuda, H., Kondo, A., Tamalampudi, S., Hendriks, A., Zeeman, G., Knocke, C., Vogt, J., Sangarunlert, W., Piumsomboon, P., Ngamprasertsith, S., Kaushal, P., Abedi, J., Tong, X., Ma, Y., Li, Y., Kim, T.H., Taylor, F., Hicks, K.B., Hu, Z., Wang, Y., Wen, Z., Zhu, L., O’Dwyer, J.P., Chang, V.S., Granda, C.B., Holtzapple, M.T., Kim, S.B., Lee, S.J., Jang, E.J., Han, S.O., Park, C., Kim, S.W., Lee, J.H., Lim, S.L., Song, Y.S., Kang, S.W., Park, C., Kim, S.W., Jung, K.W., Kim, D.H., Kim, H.W., Shin, H.S., Jeong, G.T., Park, D.H., Ko, J.K., Bak, J.S., Jung, M.W., Lee, H.J., Choi, I., Kim, T.H., Kim, K.H., Chen, W., Pen, B., Yu, C., Hwang, W., Kim, J., Kim, K.S., Lee, J., Park, S.M., Cho, H., Park, J.C., Kim, J.S., Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M., Fan, L.T., Lee, Y.H., Beardmore, D.H., Kim, T.H., Kim, J.S., Sunwoo, C., Lee, Y.Y., Sun, R.C., Sun, X.F., Lee, H., Cho, D.H., Kim, Y.H., Shin, S.J., Kim, S.B., Han, S.O., Lee, J., Kim, S.W., Park, C., Klinke, H.B., Thomsen, A.B., Ahring, B.K., Yoo, C.G., Nghiem, N.P., Hicks, K.B., Kim, T.H., Wei, G.Y., Wa, G., Jin, I.H., Yoo, S.Y., Lee, J.H., Chung, C.H., Lee, J.W., Yoon, H.H., Yoo, C.G., Lee, C.W., Kim, T.H., Wiboon, R.N., Poonsuk, P., Kim, T.G., Kim, K.: Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia. Biotechnol. Biofuels. 6(1), 109–109 (2013). https://doi.org/10.1186/1754-6834-6-109

    Article  Google Scholar 

  35. Rahnama, N., Mamat, S., Shah, U.K.M., Ling, F.H., Rahman, N.A.A., Ariff, A.B.: Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local trichoderma harzianum SNRS3 under solid state fermentation. Bioresources. 8(2), 2881–2896 (2013)

    Article  Google Scholar 

  36. Hsu, T.C., Guo, G.L., Chen, W.H., Hwang, W.S.: Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour. Technol. 101(13), 4907–4913 (2010). https://doi.org/10.1016/j.biortech.2009.10.009

    Article  Google Scholar 

  37. Weerachanchai, P., Leong, S.S.J., Chang, M.W., Ching, C.B., Lee, J.-M.: Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour. Technol. 111, 453–459 (2012). https://doi.org/10.1016/j.biortech.2012.02.023

    Article  Google Scholar 

  38. Kumar, R., Mago, G., Balan, V., Wyman, C.E.: Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 100(17), 3948–3962 (2009). https://doi.org/10.1016/j.biortech.2009.01.075

    Article  Google Scholar 

  39. Rollin, J.A., Zhu, Z., Sathitsuksanoh, N., Zhang, Y.H.P.: Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol. Bioeng. 108(1), 22–30 (2011). https://doi.org/10.1002/bit.22919

    Article  Google Scholar 

  40. Harun, S., Balan, V., Takriff, M.S., Hassan, O., Jahim, J., Dale, B.E.: Performance of AFEXTM pretreated rice straw as source of fermentable sugars: the influence of particle size. Biotechnol. Biofuels. 6(1), 40–40 (2013). https://doi.org/10.1186/1754-6834-6-40

    Article  Google Scholar 

  41. Yao, R.s., Hu, H.j., Deng, S.s., Wang, H., Zhu, H.x.: Structure and saccharification of rice straw pretreated with sulfur trioxide micro-thermal explosion collaborative dilutes alkali. Bioresour. Technol. 102(10), 6340–6343 (2011). https://doi.org/10.1016/j.biortech.2011.02.073

    Article  Google Scholar 

  42. Hou, X.D., Li, N., Zong, M.H.: Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid-water mixtures. Bioresour. Technol. 136, 469–474 (2013). https://doi.org/10.1016/j.biortech.2013.02.118

    Article  Google Scholar 

  43. Tutt, M., Kikas, T., Olt, J.: Influence of different pretreatment methods on degradation of wheat straw. Agron. Res. 10, 269–276 (2012)

    Google Scholar 

  44. Moradi, F., Amiri, H., Soleimanian-Zad, S., Ehsani, M.R., Karimi, K.: Improvement of acetone, butanol and ethanol production from rice straw by acid and alkaline pretreatments. Fuel. 112, 8–13 (2013). https://doi.org/10.1016/j.fuel.2013.05.011

    Article  Google Scholar 

  45. Maddox, I.S., Steiner, E., Hirsch, S., Wessner, S., Gutierrez, N.A., Gapes, J.R., Schuster, K.C.: The cause of “acid crash” and “acidogenic fermentations” duping the batch acetone–butanol–ethanol (ABE-) fermentation process. J. Mol. Microb. Biotechnol. 2(1), 95–100 (2000)

    Google Scholar 

  46. Shen, D., Xiao, R., Gu, S., Zhang, H.: The overview of thermal decomposition of cellulose in lignocellulosic biomass. In: Theo van de Ven and John Kadla (eds.) Cellulose. IntechOpen, (2013)

  47. Li, J., Spina, A., Moulijn, J.a., Makkee, M.: Sorbitol dehydration into isosorbide in a molten salt hydrate medium. Catal. Sci. Technol. 3(6), 1540–1540 (2013). https://doi.org/10.1039/c3cy20809e

    Article  Google Scholar 

  48. Peralta-Yahya, P.P., Zhang, F., del Cardayre, S.B., Keasling, J.D.: Microbial engineering for the production of advanced biofuels. Nature. 488(7411), 320–328 (2012). https://doi.org/10.1038/nature11478

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Research University Project of CHE, the Ratchadaphiseksomphot Endowment Fund (EN269B); National Research University Project, Office of Higher Education Commission (WCU-037-EN-57), Thailand. The authors also acknowledge the Methee-Vijai-Chula Grant, Grant for International Research Integration: Chula-Research Scholar, Ratchadaphiseksompote Endowment Fund, and Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akarin Boonsombuti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonsombuti, A., Trisinsub, O. & Luengnaruemitchai, A. Comparative Study of Three Chemical Pretreatments and Their Effects on the Structural Changes of Rice Straw and Butanol Production. Waste Biomass Valor 11, 2771–2781 (2020). https://doi.org/10.1007/s12649-019-00622-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00622-z

Keywords

Navigation