Skip to main content
Log in

Investigation of 2,4-dichlorophenoxy acetic acid adsorption and photo-Fenton degradation by nanomagnetite/calcium alginate composite based on Sargassum muticum brown algae

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the present work, three nano-solid samples were prepared, namely nanomagnetite (NG), calcium alginate (AG) based on Sargassum muticum brown algae, and nanomagnetite/calcium alginate (NGA) nanocomposite beads. These fabricated samples were characterized utilizing various physicochemical methods such as FTIR, zeta potential, TEM, SEM, XRD, DRS, N2 adsorption/desorption, and TGA. Adsorption and photo-Fenton degradation of 2,4-dichlorophenoxy acetic acid herbicide (2,4-D) were studied under different application conditions. It is found that the NGA composite is characterized by the presence of many chemical functional groups at its surface, pHPZC = 6.3, smaller average particle size (TEM particle size, 96 nm), smaller energy band gap (2.10 eV), a larger specific surface area (540.0 m2/g), mesoporosity (3.31 nm pore radius), and higher thermal stability. When comparing the results of adsorption and photo-Fenton processes for 2,4-D herbicide, NGA exhibited the maximum adsorption capacity (qm, 283.29 mg/L) after 10 h at 35 °C with favorable, spontaneous, physical adsorption, endothermic, and follows the PFO model according to thermodynamic and kinetic studies. The 2,4-D adsorption fits well with the Langmuir model with correlation coefficients (0.9774–0.9993). However, after 30 min of the photo-Fenton rection at 30 °C, 88.42% of the 2,4-D was totally degraded. 2,4-D undergoes a non-spontaneous, endothermic, and follows PFO photo-Fenton kinetic model. At lower concentrations (less than 30 mg/L) photo-Fenton degradation is a quick and easy method, whereas the adsorption process is favored for the elimination of the 2,4-D herbicide at its larger concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Dargahi A, Ansari A, Nematollahi D et al (2019) Parameter optimization and degradation mechanism for electrocatalytic degradation of 2,4-diclorophenoxyacetic acid (2,4-D) herbicide by lead dioxide electrodes. RSC Adv 9:5064–5075. https://doi.org/10.1039/c8ra10105a

    Article  Google Scholar 

  2. Yang Z, Wang Z, Wang J, Li Y, Zhang G (2022) Facet-dependent activation of oxalic acid over magnetic recyclable Fe3S4 for efficient pollutant removal under visible light irradiation: enhanced catalytic activity, DFT calculations, and mechanism insight. Environ Sci Technol 56(24):18008–18017. https://doi.org/10.1021/acs.est.2c06571

    Article  Google Scholar 

  3. Li J, Pei X, Wang Z, Li Y, Zhang G (2022) Boosted charge transfer and selective photocatalytic CO2 reduction to CH4 over sulfur-doped K0.475WO3 nanorods under visible light: performance and mechanism insight. Appl Surf Sci 605:154632. https://doi.org/10.1016/j.apsusc.2022.154632

    Article  Google Scholar 

  4. Yan H, Lai C, Liu S, Wang D, Zhou X, Zhang M, Li L, Li X, Xu F, Nie J (2023) Metal-carbon hybrid materials induced persulfate activation: application, mechanism, and tunable reaction pathways. Water Res 234:119808. https://doi.org/10.1016/j.watres.2023.119808

    Article  Google Scholar 

  5. Mondol MMH, Jhung SH (2021) Adsorptive removal of pesticides from water with metal–organic framework-based materials. Chem Eng J 421. https://doi.org/10.1016/j.cej.2021.129688

  6. Venkatachalapathy R, Packirisamy ASB, Indira Ramachandran AC et al (2020) Assessing the effect of chitosan on pesticide removal in grape juice during clarification by gas chromatography with tandem mass spectrometry. Process Biochem 94:305–312. https://doi.org/10.1016/j.procbio.2020.04.035

    Article  Google Scholar 

  7. Alikhani N, Farhadian M, Goshadrou A, et al (2021) Photocatalytic degradation and adsorption of herbicide 2,4-dichlorophenoxyacetic acid from aqueous solution using TiO2/BiOBr/Bi2S3 nanostructure stabilized on the activated carbon under visible light. Environ Nanotechnol Monit Manag 15. https://doi.org/10.1016/j.enmm.2020.100415

  8. Jokar Baloochi S, Solaimany Nazar AR, Farhadian M (2018) 2,4-Dichlorophenoxyacetic acid herbicide photocatalytic degradation by zero-valent iron / titanium dioxide based on activated carbon. Environ Nanotechnol Monit Manag 10:212–222. https://doi.org/10.1016/j.enmm.2018.07.008

    Article  Google Scholar 

  9. Njoku VO, Hameed BH (2011) Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption. Chem Eng J 173:391–399. https://doi.org/10.1016/j.cej.2011.07.075

    Article  Google Scholar 

  10. Abdollahzadeh G, Sharifzadeh MS (2021) Predicting farmers’ intention to use PPE for prevent pesticide adverse effects: an examination of the Health Belief Model (HBM). J Saudi Soc Agric Sci 20:40–47. https://doi.org/10.1016/j.jssas.2020.11.001

    Article  Google Scholar 

  11. Derylo-Marczewska A, Blachnio M, Marczewski AW et al (2010) Adsorption of selected herbicides from aqueous solutions on activated carbon. J Therm Anal Calorim 101:785–794. https://doi.org/10.1007/s10973-010-0840-7

    Article  Google Scholar 

  12. Dargahi A, Shokoohi R, Asgari G et al (2021) Moving-bed biofilm reactor combined with three-dimensional electrochemical pretreatment (MBBR-3DE) for 2,4-D herbicide treatment: application for real wastewater, improvement of biodegradability. RSC Adv 11:9608–9620. https://doi.org/10.1039/d0ra10821a

    Article  Google Scholar 

  13. WHO, WHO (2009) Recommended Classifica-tion of Pesticides by Hazard and Guidelines to Classification. (https://www.who.int/ipcs/publications/pesticides_hazard_2009.pdf). Accessed 15 Mar 2023

  14. Li L, Yin Z, Cheng M, Qin L, Liu S, Yi H, Zhang M, Fu Y, Yang X, Zhou X, Zeng G, Lai C (2023) Insights into reactive species generation and organics selective degradation in Fe-based heterogeneous Fenton-like systems: a critical review. Chem Eng J 454:140126. https://doi.org/10.1016/j.cej.2022.140126

    Article  Google Scholar 

  15. Lai C, Ma D, Yi H, Zhang M, Xu F, Huo X, Ye H, Li L, Yang L, Tang L, Yan M (2023) Functional partition of Fe and Ti co-doped g-C3N4 for photo-Fenton degradation of oxytetracycline: performance, mechanism, and DFT study. Sep Purif Technol 306:122546. https://doi.org/10.1016/j.seppur.2022.122546

    Article  Google Scholar 

  16. Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003. https://doi.org/10.1016/j.ultsonch.2009.09.005

    Article  Google Scholar 

  17. Jaafarzadeh N, Ghanbari F, Ahmadi M (2017) Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes. Chem Eng J 320:436–447. https://doi.org/10.1016/j.cej.2017.03.036

    Article  Google Scholar 

  18. Plakas KV, Karabelas AJ (2012) Removal of pesticides from water by NF and RO membranes - a review. Desalination 287:255–265. https://doi.org/10.1016/j.desal.2011.08.003

    Article  Google Scholar 

  19. Mojiri A, Zhou JL, Robinson B, et al (2020) Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 253. https://doi.org/10.1016/j.chemosphere.2020.126646

  20. Rayaroth MP, Aravindakumar CT, Shah NS, Boczkaj G (2022) Advanced oxidation processes (AOPs) based wastewater treatment - unexpected nitration side reactions - a serious environmental issue: A review. Chem Eng J 430:133002. https://doi.org/10.1016/j.cej.2021.133002

    Article  Google Scholar 

  21. Yang J, Guo B, Li L, et al (2023) Enhancement of peroxymonosulfate activation for 2,4-dichlorophenoxyacetic acid removal by MoSe2 induced Fe redox cycles. Chemosphere 311. https://doi.org/10.1016/j.chemosphere.2022.137170

  22. Bulánek R, Hrdina R, Hassan AF (2019) Preparation of polyvinylpyrrolidone modified nanomagnetite for degradation of nicotine by heterogeneous Fenton process. J Environ Chem Eng 7. https://doi.org/10.1016/j.jece.2019.102988

  23. Hassan AF, Mustafa AA, Esmail G, Awad AM (2023) Adsorption and photo-Fenton degradation of methylene blue using nanomagnetite/potassium carrageenan bio-composite beads. Arab J Sci Eng 48:353–373. https://doi.org/10.1007/s13369-022-07075-y

    Article  Google Scholar 

  24. Bashir A, Pandith AH, Qureashi A, et al (2022) Catalytic propensity of biochar decorated with core-shell nZVI@Fe3O4: a sustainable photo-Fenton catalysis of methylene blue dye and reduction of 4-nitrophenol. J Environ Chem Eng 10. https://doi.org/10.1016/j.jece.2022.107401

  25. Hamd WS, Dutta J (2020) Heterogeneous photo-Fenton reaction and its enhancement upon addition of chelating agents. Nanomater Detect Remov Wastewater Pollut 303–330. https://doi.org/10.1016/B978-0-12-818489-9.00011-6

  26. Hassan AF, Alshandoudi LM, Awad AM et al (2023) Synthesis of nanomagnetite/copper oxide/potassium carrageenan nanocomposite for the adsorption and Photo-Fenton degradation of Safranin-O: kinetic and thermodynamic studies. Macromol Res. https://doi.org/10.1007/s13233-023-00147-4

    Article  Google Scholar 

  27. Strasdat B, Bunjes H (2015) Development of a new approach to investigating the drug transfer from colloidal carrier systems applying lipid nanosuspension-containing alginate microbeads as acceptor. Int J Pharm 489:203–209. https://doi.org/10.1016/j.ijpharm.2015.03.082

    Article  Google Scholar 

  28. Liu M, Dai L, Shi H et al (2015) In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater Sci Eng C 49:700–712. https://doi.org/10.1016/j.msec.2015.01.037

    Article  Google Scholar 

  29. Thu HE, Zulfakar MH, Ng SF (2012) Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int J Pharm 434:375–383. https://doi.org/10.1016/j.ijpharm.2012.05.044

    Article  Google Scholar 

  30. Hassan AF, Abdel-Mohsen AM, Fouda MMG (2014) Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption. Carbohydr Polym 102:192–198. https://doi.org/10.1016/j.carbpol.2013.10.104

    Article  Google Scholar 

  31. Khan MM, Khan A, Bhatti HN et al (2021) Composite of polypyrrole with sugarcane bagasse cellulosic biomass and adsorption efficiency for 2,4-dicholrophonxy acetic acid in column mode. J Mater Res Technol 15:2016–2025. https://doi.org/10.1016/j.jmrt.2021.09.028

    Article  Google Scholar 

  32. Wu H, Gong L, Zhang X et al (2021) Bifunctional porous polyethyleneimine-grafted lignin microspheres for efficient adsorption of 2,4-dichlorophenoxyacetic acid over a wide pH range and controlled release. Chem Eng J 411:128539. https://doi.org/10.1016/j.cej.2021.128539

    Article  Google Scholar 

  33. Liu Q, Xu K, Hu G, et al (2022) Underwater superelastic MOF/polyacrylamide/chitosan composite aerogel for efficient 2, 4-dichlorophenoxyacetic acid adsorption. Colloids Surf A Physicochem Eng Asp 635. https://doi.org/10.1016/j.colsurfa.2021.127970

  34. Sathish S., Prasad BN, Kumar J A, et al (2022) Batch and column studies for adsorption of naphthalene from its aqueous solution using nanochitosan/sodium alginate composite. Polym Bull 1–21

  35. Thakur S, Verma A, Raizada P, et al (2022) Bentonite-based sodium alginate/ dextrin cross-linked poly (acrylic acid) hydrogel nanohybrids for facile removal of paraquat herbicide from aqueous solutions. Chemosphere 291. https://doi.org/10.1016/j.chemosphere.2021.133002

  36. Fertah M, Belfkira A, Montassir DE et al (2017) Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 10:S3707–S3714. https://doi.org/10.1016/j.arabjc.2014.05.003

    Article  Google Scholar 

  37. Ait Ichou A, Benhiti R, Abali M, et al (2023) Characterization and sorption study of Zn2[FeAl]-CO3 layered double hydroxide for Cu(II) and Pb(II) removal. J Solid State Chem 320. https://doi.org/10.1016/j.jssc.2023.123869

  38. Idrees SA, Naman SA, Shorachi A (2018) Kinetic and thermodynamic study of Trifluralin photo-degradation by ultra violet light. IOP Conf Ser Mater Sci Eng 454. https://doi.org/10.1088/1757-899X/454/1/012045

  39. Abdelaziz MA, Owda ME, Abouzeid RE et al (2023) Kinetics, isotherms, and mechanism of removing cationic and anionic dyes from aqueous solutions using chitosan/magnetite/silver nanoparticles. Int J Biol Macromol 225:1462–1475. https://doi.org/10.1016/j.ijbiomac.2022.11.203

    Article  Google Scholar 

  40. Kumar A, Prasad S, Saxena PN et al (2021) Synthesis of an alginate-based Fe3O4-MnO2Xerogel and its application for the concurrent elimination of Cr(VI) and Cd(II) from aqueous solution. ACS Omega 6:3931–3945. https://doi.org/10.1021/acsomega.0c05787

    Article  Google Scholar 

  41. Yin J, Liu Q, Zhou J et al (2020) Self-assembled functional components-doped conductive polypyrrole composite hydrogels with enhanced electrochemical performances. RSC Adv 10:10546–10551. https://doi.org/10.1039/d0ra00102c

    Article  Google Scholar 

  42. Lin Z, Yang Y, Liang Z, et al (2021) Preparation of chitosan/calcium alginate/bentonite composite hydrogel and its heavy metal ions adsorption properties. Polymers (Basel) 13. https://doi.org/10.3390/polym13111891

  43. El-Shamy OAA, El-Azabawy RE, El-Azabawy OE (2019) Synthesis and characterization of magnetite-alginate nanoparticles for enhancement of nickel and cobalt ion adsorption from wastewater. J Nanomater 2019. https://doi.org/10.1155/2019/6326012

  44. Li W, Zhang L, Hu D et al (2021) A mesoporous nanocellulose / sodium alginate / carboxymethyl-chitosan gel beads for efficient adsorption of Cu 2+ and Pb 2+. Int J Biol Macrol 187:922–930. https://doi.org/10.1016/j.ijbiomac.2021.07.181

  45. Amirnejat S, Nosrati A, Javanshir S (2020) Superparamagnetic Fe3O4@Alginate supported L-arginine as a powerful hybrid inorganic–organic nanocatalyst for the one-pot synthesis of pyrazole derivatives. Appl Organomet Chem 34:1–13. https://doi.org/10.1002/aoc.5888

    Article  Google Scholar 

  46. Cheng Q, Wang Z, Wang X et al (2023) A novel Cu1.5Mn1.5O4 photothermal catalyst with boosted surface lattice oxygen activation for efficiently photothermal mineralization of toluene. Nano Res 16:2133–2141. https://doi.org/10.1007/s12274-022-4946-6

    Article  Google Scholar 

  47. Nordin AH, Ahmad K, Xin LK et al (2019) Efficient adsorptive removal of methylene blue from synthetic dye wastewater by green alginate modified with pandan. Mater Today Proc 39:979–982. https://doi.org/10.1016/j.matpr.2020.04.564

    Article  Google Scholar 

  48. Zadeh RJ, Sayadi MH, Rezaei MR (2020) Removal of 2,4-dichlorophenoxyacetic acid from aqueous solutions by modified magnetic nanoparticles with amino functional groups. J Water Environ Nanotechnol 5:147–156. https://doi.org/10.22090/jwent.2020.02.005

    Article  Google Scholar 

  49. Taheri E, Fatehizadeh A, Lima EC, Rezakazemi M (2022) High surface area acid-treated biochar from pomegranate husk for 2,4-dichlorophenol adsorption from aqueous solution. Chemosphere 295. https://doi.org/10.1016/j.chemosphere.2022.133850

  50. Hassan AF, Hrdina R (2022) Enhanced removal of arsenic from aqueous medium by modified silica nanospheres: kinetic and thermodynamic studies. Arab J Sci Eng 47:281–293. https://doi.org/10.1007/s13369-021-05357-5

    Article  Google Scholar 

  51. Pereira HA, da Boit Martinello K, Vieira Y et al (2023) Adsorptive behavior of multi-walled carbon nanotubes immobilized magnetic nanoparticles for removing selected pesticides from aqueous matrices. Chemosphere 325:138384. https://doi.org/10.1016/j.chemosphere.2023.138384

    Article  Google Scholar 

  52. Moradeeya PG, Kumar MA, Sharma A, Basha S (2022) Conductive polymer layered semiconductor for degradation of triclopyr acid and 2,4-dichlorophenoxyacetic acid from aqueous stream using coalesce adsorption-photocatalysis technique. Chemosphere 298. https://doi.org/10.1016/j.chemosphere.2022.134360

  53. Inyinbor AA, Adekola FA, Olatunji GA (2016) Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour Ind 15:14–27. https://doi.org/10.1016/j.wri.2016.06.001

    Article  Google Scholar 

  54. Dinh HT, Tran NT, Trinh DX (2021) Investigation into the adsorption of methylene blue and methyl orange by UiO-66-NO2Nanoparticles. J Anal Methods Chem 2021. https://doi.org/10.1155/2021/5512174

  55. Shaban M, Abukhadra MR, Mohamed AS et al (2018) Synthesis of mesoporous graphite functionalized by nitrogen for efficient removal of safranin dye utilizing rice husk ash; equilibrium studies and response surface optimization. J Inorg Organomet Polym Mater 28:279–294. https://doi.org/10.1007/s10904-017-0726-2

    Article  Google Scholar 

  56. Georgin J, Franco DSP, Netto MS et al (2021) Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins. Environ Sci Pollut Res 28:36453–36463. https://doi.org/10.1007/s11356-021-12813-0

    Article  Google Scholar 

  57. Hassan AF (2019) Synthesis of carbon nano-onion embedded metal–organic frameworks as an efficient adsorbent for cadmium ions: kinetic and thermodynamic studies. Environ Sci Pollut Res 26:24099–24111. https://doi.org/10.1007/s11356-019-05581-5

    Article  Google Scholar 

  58. Salomón YLDO, Georgin J, Franco DSP, et al (2021) High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana). J Environ Chem Eng 9. https://doi.org/10.1016/j.jece.2020.104911

  59. Vinayagam R, Pai S, Murugesan G et al (2022) Magnetic activated charcoal/Fe2O3 nanocomposite for the adsorptive removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous solutions: synthesis, characterization, optimization, kinetic and isotherm studies. Chemosphere 286:131938. https://doi.org/10.1016/j.chemosphere.2021.131938

    Article  Google Scholar 

  60. Aljeboree AM, Alshirifi AN, Alkaim AF (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 10:S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020

    Article  Google Scholar 

  61. Kamal KH, Dacrory S, Ali SSM et al (2019) Adsorption of Fe ions by modified carrageenan beads with tricarboxy cellulose: kinetics study and four isotherm models. Desalin Water Treat 165:281–289. https://doi.org/10.5004/dwt.2019.24560

    Article  Google Scholar 

  62. Vinayagam R, Ganga S, Murugesan G et al (2023) 2,4-Dichlorophenoxyacetic acid (2,4-D) adsorptive removal by algal magnetic activated carbon nanocomposite. Chemosphere 310:136883. https://doi.org/10.1016/j.chemosphere.2022.136883

    Article  Google Scholar 

  63. Boukhalfa N, Boutahala M, Djebri N, Idris A (2019) Kinetics, thermodynamics, equilibrium isotherms, and reusability studies of cationic dye adsorption by magnetic alginate/oxidized multiwalled carbon nanotubes composites. Int J Biol Macromol 123:539–548. https://doi.org/10.1016/j.ijbiomac.2018.11.102

    Article  Google Scholar 

  64. Duman O, Polat TG, Diker CÖ, Tunç S (2020) Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water. Int J Biol Macromol 160:823–835. https://doi.org/10.1016/j.ijbiomac.2020.05.191

    Article  Google Scholar 

  65. Kırbıyık Ç, Pütün AE, Pütün E (2017) Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation. Surf Interfaces 8:182–192. https://doi.org/10.1016/j.surfin.2017.03.011

    Article  Google Scholar 

  66. Shi Z, Zhang R, Zhang J (2021) Role of weak magnetic field for enhanced oxidation of orange G by magnetic Fenton. Environ Sci Pollut Res 28:59834–59843. https://doi.org/10.1007/s11356-021-14887-2

    Article  Google Scholar 

  67. Midik Ertosun F, Cellat K, Eren O et al (2019) Comparison of nanoscale zero-valent iron, fenton, and photo-fenton processes for degradation of pesticide 2,4-dichlorophenoxyacetic acid in aqueous solution. SN Appl Sci 1:1–6. https://doi.org/10.1007/s42452-019-1554-5

    Article  Google Scholar 

  68. Liu ST, Huang J, Ye Y et al (2013) Microwave enhanced Fenton process for the removal of methylene blue from aqueous solution. Chem Eng J 215–216:586–590. https://doi.org/10.1016/J.CEJ.2012.11.003

    Article  Google Scholar 

  69. Hu S, Yao H, Wang K, et al (2015) Intensify removal of nitrobenzene from aqueous solution using nano-zero valent iron/granular activated carbon composite as fenton-like catalyst. Water Air Soil Pollut 226. https://doi.org/10.1007/s11270-015-2421-7

  70. Thabet RH, Tony MA, El Sherbiny SA, et al (2020) Catalytic oxidation over nanostructured heterogeneous process as an effective tool for environmental remediation. IOP Conf Ser Mater Sci Eng 975. https://doi.org/10.1088/1757-899X/975/1/012004

  71. Hassan AF, Elhadidy H, Abdel-Mohsen AM (2017) Adsorption and photocatalytic detoxification of diazinon using iron and nanotitania modified activated carbons. J Taiwan Inst Chem Eng 75:299–306. https://doi.org/10.1016/j.jtice.2017.03.026

    Article  Google Scholar 

  72. Jain B, Singh AK, Kim H et al (2018) Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ Chem Lett 16:947–967. https://doi.org/10.1007/s10311-018-0738-3

    Article  Google Scholar 

  73. Raheb I, Manlla MS (2021) Kinetic and thermodynamic studies of the degradation of methylene blue by photo-Fenton reaction. Heliyon 7:0–4. https://doi.org/10.1016/j.heliyon.2021.e07427

  74. Ullah I, Raziq A, Akbar F et al (2019) Kinetic and thermodynamic study of oxidative degradation of acid yellow 17 dye by Fenton-like process: effect of HCO3−, CO32−, Cl and SO42− on dye degradation. Bull Chem Soc Ethiop 33(2):243–254. https://doi.org/10.4314/bcse.v33i2.5

    Article  Google Scholar 

  75. Ahile UJ, Wuana RA, Itodo AU et al (2020) Stability of iron chelates during photo-Fenton process: the role of pH, hydroxyl radical attack and temperature. J Water Process Eng 36:101320. https://doi.org/10.1016/j.jwpe.2020.101320

    Article  Google Scholar 

  76. Gopinath A, Pisharody L, Popat A, Nidheesh P V. (2022) Supported catalysts for heterogeneous electro-Fenton processes: recent trends and future directions. Curr Opin Solid State Mater Sci 26. https://doi.org/10.1016/j.cossms.2022.100981

  77. Liu W, Yang Q, Yang Z, Wang W (2016) Adsorption of 2,4-D on magnetic graphene and mechanism study. Colloids Surfaces A Physicochem Eng Asp 509:367–375. https://doi.org/10.1016/j.colsurfa.2016.09.039

    Article  Google Scholar 

  78. Taktak F, İlbay Z, Şahin S (2015) Evaluation of 2,4-D removal via activated carbon from pomegranate husk/polymer composite hydrogel: Optimization of process parameters through face centered composite design. Korean J Chem Eng 32:1879–1888. https://doi.org/10.1007/s11814-015-0010-5

    Article  Google Scholar 

  79. Goscianska J, Olejnik A (2019) Removal of 2,4-D herbicide from aqueous solution by aminosilane-grafted mesoporous carbons. Adsorption 25:345–355. https://doi.org/10.1007/s10450-019-00015-7

    Article  Google Scholar 

  80. Bandala ER, Peláez MA, Dionysiou DD et al (2007) Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process. J Photochem Photobiol A Chem 186:357–363. https://doi.org/10.1016/j.jphotochem.2006.09.005

    Article  Google Scholar 

  81. Gutiérrez-Zapata HM, Rojas KL, Sanabria J, Rengifo-Herrera JA (2017) 2,4-D abatement from groundwater samples by photo-Fenton processes at circumneutral pH using naturally iron present. Effect of inorganic ions. Environ Sci Pollut Res 24:6213–6221. https://doi.org/10.1007/s11356-016-7067-5

    Article  Google Scholar 

  82. Ebrahimi R, Mohammadi M, Maleki A et al (2020) Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in aqueous solution using Mn-doped ZnO/graphene nanocomposite under LED radiation. J Inorg Organomet Polym Mater 30:923–934. https://doi.org/10.1007/s10904-019-01280-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The entire article was carried out by Laila M. Alshandoudi as a single author.

Corresponding author

Correspondence to Laila M. Alshandoudi.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2539 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshandoudi, L.M. Investigation of 2,4-dichlorophenoxy acetic acid adsorption and photo-Fenton degradation by nanomagnetite/calcium alginate composite based on Sargassum muticum brown algae. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04745-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04745-1

Keywords

Navigation