Skip to main content

Advertisement

Log in

Enhanced Removal of Arsenic from Aqueous Medium by Modified Silica Nanospheres: Kinetic and Thermodynamic Studies

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, silica nanospheres (S) and trizma base-modified silica nanospheres (ST2, ST4, ST6, and ST8) were synthesized for the removal of arsenic from aqueous medium with high efficiency. Characterization of the prepared solid adsorbents was performed with different techniques such as thermogravimetric analysis, scanning electron microscopy, X-ray diffraction patterns, transmission electron microscopy, selected area electron diffraction, fast Fourier transform, nitrogen adsorption, point of zero charge (pHPZC), and Fourier transform infrared. Adsorption of As+5 was investigated under different application conditions such as adsorbent dosage, pH, shaking time, temperature, and initial As+5 concentration. Maximum adsorption capacity reached 64.5 mg g−1 at pH 6, 0.9 g L−1 as adsorbent dosage, after 60 min of shaking time, and at 25 °C as the optimum adsorption conditions. Adsorption data of As+5 by the prepared nanoadsorbents are best fitted with Langmuir, Temkin, and Dubinin–Radushkevich models. Kinetic studies revealed that the adsorption followed pseudo-second-order and Elovich kinetic models. Thermodynamic studies prove that the adsorption process is endothermic, spontaneous, and chemisorption in nature. The most effective desorption was achieved by nitric acid with 99% desorption efficiency. The prepared silica nanospheres solid adsorbents showed a good reusability with 91% adsorption efficiency after four cycles of adsorption and desorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdel-Fattah, T.M.; Mahmoud, M.E.: Selective extraction of toxic heavy metal oxyanions and cations by a novel silica gel phase functionalized by vitamin B4. Chem. Eng. J. 172, 177–183 (2011)

    Google Scholar 

  2. Vega, M.P.B.; Hinojosa-Reyes, M.; Hernández-Ramírez, A.; Guzmán Mar, J.L.; Rodríguez-González, V.; Hinojosa-Reyes, L.: Visible light photocatalytic activity of sol–gel Ni-doped TiO2 on p-arsanilic acid degradation. J. Sol-Gel. Sci. Technol. 85, 723–731 (2018)

    Google Scholar 

  3. Huang, Y.; Yang, Y.; Hu, H.; Xu, M.; Liu, H.; Li, X.; Wang, X.; Yao, H.: A deep insight into arsenic adsorption over γ-Al2O3 in the presence of SO2 /NO. Proc. Combust. Inst. 37, 2951–2957 (2019)

    Google Scholar 

  4. Sherlala, A.I.A.; Raman, A.A.A.; Bello, M.M.; Buthiyappan, A.: Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite. J. Environ. Manag. 246, 547–556 (2019)

    Google Scholar 

  5. Li, Z.; Liu, X.; Jin, W.; Hu, Q.; Zhao, Y.: Adsorption behavior of arsenicals on MIL-101(Fe): the role of arsenic chemical structures. J. Colloid Interface Sci. 554, 692–704 (2019)

    Google Scholar 

  6. Mohammed, T.; Kazeem, T.S.; Essa, M.H.; Labaran, B.A.; Vohra, M.S.: Comparative study on electrochemical treatment of arsenite: effects of process parameters, sludge characterization and kinetics. Arab. J. Sci. Eng. 45, 3799–3815 (2020)

    Google Scholar 

  7. An, B.; Steinwinder, T.R.; Zhao, D.: Selective removal of arsenate from drinking water using a polymeric ligand exchanger. Water Res. 39, 4993–5004 (2005)

    Google Scholar 

  8. Luo, M.K.; Lin, H.; He, Y.H.; Li, B.; Dong, Y.B.; Wang, L.: Efficient simultaneous removal of cadmium and arsenic in aqueous solution by titanium-modified ultrasonic biochar. Bioresour. Technol. 284, 333–339 (2019)

    Google Scholar 

  9. Da Silva, E.B.; de Oliveira, L.M.; Wilkie, A.C.; Liu, Y.; Ma, L.Q.: Arsenic removal from As-hyperaccumulator Pteris vittata biomass: coupling extraction with precipitation. Chemosphere 193, 288–294 (2018)

    Google Scholar 

  10. Yue, T.; Niub, Z.; Hu, Y.; Han, H.; Sun, W.; Tian, J.; Xu, Z.; Wang, L.; Yang, Y.: Arsenic adsorption on ferric oxyhydroxide gel at high alkalinity for securely recycling of arsenic-bearing copper slag. Appl. Surf. Sci. 478, 213–222 (2019)

    Google Scholar 

  11. Leslie, L.A.T.; María, M.B.: Predicting the adsorption capacity of iron nanoparticles with metallic impurities (Cu, Ni and Pd) for arsenic removal: a DFT study. Adsorption 26, 127–139 (2020)

    Google Scholar 

  12. Hashim, M.A.; Kundu, A.; Mukherjee, S.; Ng, Y.; Mukhopadhyay, S.; Redzwan, G.; Gupta, B.S.: Arsenic removal by adsorption on activated carbon in a rotating packed bed. J. Water Process Eng. 30, 100591–100560 (2019)

    Google Scholar 

  13. Hu, C.; Chen, Q.; Li, H.; Qu, J.: Coagulation of methylated arsenic from drinking water: influence of methyl substitution. J. Hazard. Mater. 293, 97–104 (2015)

    Google Scholar 

  14. Zhang, A.; Huang, N.; Zhang, C.; Zhao, P.; Lin, T.; He, Y.: Heterogeneous Fenton decontamination of organoarsenicals and simultaneous adsorption of released arsenic with reduced secondary pollution. Chem. Eng. J. 344, 1–11 (2018)

    Google Scholar 

  15. Sandhi, A.; Landberg, T.; Greger, M.: Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans). Environ. Pollut. 237, 1098–1105 (2018)

    Google Scholar 

  16. Alakhras, F.; Ouerfelli, N.; Al-Mazaideh, G.; Ababneh, T.; Al-Abbad, E.; Abouzeid, F.: Optimal pseudo-average order kinetic model for correlating the removal of nickel ions by adsorption on nanobentonite. Arab. J. Sci. Eng. 44, 159–168 (2019)

    Google Scholar 

  17. Duran, H.; Alkan, F.Ü.; Ulkay, M.B.; Karakuş, S.; Aktş, A.; Şişmanoğlu, T.: Investigation of the in vitro cytotoxic effects and wound healing activity of ternary composite substance (hollow silica sphere/gum arabic/methylene blue). Int. J. Biol. Macromol. 121, 1194–1202 (2019)

    Google Scholar 

  18. Ruffel, L.; Soulié, J.; Coppel, Y.; Roblin, P.; Brouillet, F.; Tourbin, M.: Ibuprofen loading into mesoporous silica nanoparticles using Co-Spray drying: a multi-scale study. Microporous Mesoporous Mater. 291, 109689–109699 (2020)

    Google Scholar 

  19. Wang, X.; Zhao, Z.: Spherical hollow mesoporous silica supported phosphotungstic acid as a promising catalyst for α-arylstyrenes synthesis via Friedel-Crafts alkenylation. Chin. Chem. Lett. 30(3), 729–734 (2019)

    Google Scholar 

  20. Shuangqing, S.; Xiyu, Z.; Meng, C.; Yan, W.; Chunling, L.; Songqing, H.: Facile preparation of redox-responsive hollow mesoporous silica spheres for the encapsulation and controlled release of corrosion inhibitors. Prog. Org. Coat. 136, 105302–105310 (2019)

    Google Scholar 

  21. Zong, J.; Zhang, Y.S.; Zhu, Y.; Zhao, Y.; Zhang, W.; Zhu, Z.: Rapid and highly selective detection of formaldehyde in food using quartz crystal microbalance sensors based on biomimetic poly-dopamine functionalized hollow mesoporous silica spheres. Sens. Actuators B. Chem. 271, 311–320 (2018)

    Google Scholar 

  22. Kalhor, M.M.; Rafati, A.A.; Rafati, L.: Synthesis, characterization and adsorption studies of amino functionalized silica nano hollow sphere as an efficient adsorbent for removal of imidacloprid pesticide. J. Mol. Liq. 266, 453–459 (2019)

    Google Scholar 

  23. Najafi, M.; Yousefi, Y.; Rafati, A.A.: Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Sep. Purif. Technol. 85, 193–205 (2012)

    Google Scholar 

  24. Hassan, A.F.: Synthesis of carbon nano-onion embedded metal–organic frameworks as an efficient adsorbent for cadmium ions: kinetic and thermodynamic studies. Environ. Sci. Pollut. Res. 26(23), 24099–24111 (2019)

    Google Scholar 

  25. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. A. Chem. Soc. 38, 2221–2295 (1916)

    Google Scholar 

  26. Hyun-Kyu, L.; Jung-Weon, C.; Sang-June, C.: Magnetic ion-imprinted polymer based on mesoporous silica for selective removal of Co (II) from radioactive wastewater. Sep. Sci. Technol. (2020). https://doi.org/10.1080/01496395.2020.1797798

    Article  Google Scholar 

  27. Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.: Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. J. Appl. Chem. 3(1), 38–45 (2012)

    Google Scholar 

  28. Banerjee, S.; Chattopadhyaya, M.C.: Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low-cost agricultural by-product. Arab. J. Chem. 10, S1629–S1638 (2017)

    Google Scholar 

  29. Hassan, A.F.; Elhadidy, H.: Production of activated carbons from waste carpets and its application in methylene blue adsorption: Kinetic and thermodynamic studies. J. Environ Chem. Eng. 5, 955–963 (2017)

    Google Scholar 

  30. Yuan, J.; Zhou, T.; Pu, H.: Nano-sized silica hollow spheres: Preparation, mechanism analysis and its water retention property. J. Phys. Chem. Solids. 71, 1013–1019 (2010)

    Google Scholar 

  31. Chitra, K.; Annadurai, G.: Fluorescent silica nanoparticles in the detection and control of the growth of pathogen. J. Nanotechnol. 7(17), 1–7 (2013)

    Google Scholar 

  32. Shitre, P.V.; Harale, R.R.; Sathe, B.R.; Shingare, M.M.S.: Silica nanosphere-graphene oxide (SiO2–GO) hybrid catalyzed facile synthesis of functionalized quinoxaline derivatives. Res. Chem. Intermed. 43, 829–841 (2017)

    Google Scholar 

  33. Gorji, B.; Ghasri, M.R.A.; Fazaeli, R.; Niksirat, N.: Synthesis and characterizations of silica nanoparticles by a new sol-gel method. J. Appl. Chem. Res. 6(3), 22–26 (2012)

    Google Scholar 

  34. Skwarek, E.; Goncharuk, O.; Sternik, D.; Janusz, W.; Gdula, K.; Gun’ko, V.M.: Synthesis, structural, and adsorption properties and thermal stability of nanohydroxyapatite/polysaccharide composites. Nanoscale Res. Lett. 12, 155–166 (2017)

    Google Scholar 

  35. Hassan, A.F.; Helmy, S.A.; Donia, A.: MCM-41 for meloxicam dissolution improvement: in vitro release and in vivo bioavailability studies. J. Brazil. Chem. Soc. 26(7), 1367–1378 (2015)

    Google Scholar 

  36. Zhang, Y.; Cao, X.; Sun, J.; Wu, G.; Wang, J.; Zhang, D.: Synthesis of pyridyl Schiff base functionalized SBA-15 mesoporous silica for the removal of Cu (II) and Pb (II) from aqueous solution. J. Solgel Sci. Technol. 94, 658–670 (2019)

    Google Scholar 

  37. Romero, A.A.; Alba, M.D.; Zhou, W.; Klinowski, J.: Synthesis and characterization of the mesoporous silicate molecular sieve MCM-48. J. Phys. Chem. 101, 5294–5300 (1997)

    Google Scholar 

  38. White, L.D.; Tripp, C.P.: Reaction of (3-Aminopropyl) dimethylethoxysilane with amine catalysts on silica surfaces. J. Colloid Interface Sci. 232, 400–407 (2000)

    Google Scholar 

  39. Chen, B.; Quan, G.; Wang, Z.; Chen, J.; Wu, L.; Xu, Y.; Li, G.; Wu, C.: Hollow mesoporous silica as a drug solution delivery system for insoluble drugs. Powder Technol. 240, 48–53 (2013)

    Google Scholar 

  40. Mahmoud, M.E.; Fekry, N.; El-Latif, M.M.A.: Nanocomposites of nanosilica-immobilized-nanopolyaniline and crosslinked nanopolyaniline for removal of heavy metals. Chem. Eng. J. 304, 679–691 (2016)

    Google Scholar 

  41. Su, H.; Ye, Z.; Hmidi, N.: High-performance iron oxide-graphene oxide nanocomposite adsorbents for arsenic removal. Colloids Surf. A Physicochem. Eng. Asp. 522, 161–172 (2017)

    Google Scholar 

  42. Escudero, C.; Fiol, N.; Villaescusa, I.; Bollinger, J.C.: Arsenic removal by a waste metal (hydr) oxide entrapped into calcium alginate beads. J. Hazard. Mater. 164, 533–541 (2009)

    Google Scholar 

  43. Wu, F.; Tseng, R.; Juang, R.: Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 150, 366–373 (2009)

    Google Scholar 

  44. Zhang, Y.; Jin, F.; Shen, Z.; Lynch, R.; Al-Tabbaa, A.: Kinetic and equilibrium modeling of MTBE (methyl tert-butyl ether) adsorption on ZSM-5 zeolite: batch and column studies. J. Hazard. Mater. 347, 461–469 (2018)

    Google Scholar 

  45. Erhayem, M.; Al-Tohami, F.; Mohamed, R.; Ahmida, K.: Isotherm, kinetic and thermodynamic studies for the sorption of mercury (II) onto activated carbon from rosmarinus officinalis leaves. Am. J. Anal. Chem. 6, 1–10 (2015)

    Google Scholar 

  46. Shahmohammadi, K.S.H.; Babazadeh, H.; Nazemi, A.H.; Manshouri, M.: Isotherm and kinetic studies on adsorption of Pb, Zn and Cu by Kaolinite. Casp. J. Environ. Sci. 9, 243–255 (2011)

    Google Scholar 

  47. Helfferich, F.: Ion Exchange. McGraw-Hill, New York (1962)

    Google Scholar 

  48. Bertolini, T.C.R.; Izidoro, J.C.; Magdalena, C.P.; Fungaro, D.A.: Adsorption of crystal violet dye from aqueous solution onto zeolites from coal fly and bottom ashes. Electron. J. Chem. 5(3), 179–191 (2013)

    Google Scholar 

  49. Agarwal, S.; Tyagi, I.T.; Gupta, V.K.; Ghasemi, N.; Shahivand, M.; Ghasemi, M.: Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride. J. Mol. Liq. 218, 208–218 (2016)

    Google Scholar 

  50. Bulánek, R.; Hrdina, R.; Hassan, A.F.: Preparation of polyvinylpyrrolidone modified nanomagnetite for degradation of nicotine by heterogeneous Fenton process. J. Environ. Chem. Eng. 7, 102988–102997 (2019)

    Google Scholar 

  51. Jian, M.; Liu, B.; Hang, Z.G.; Liu, R.; Zhang, X.: Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Coll. Surf. A. 465, 67–76 (2015)

    Google Scholar 

  52. Malana, M.A.; Qureshi, R.B.; Ashiq, M.N.: Adsorption studies of arsenic on nano aluminum doped manganese copper ferrite polymer (MA, VA, AA) composite: kinetics and mechanism. Chem. Eng. J. 172, 721–727 (2011)

    Google Scholar 

  53. Martinson, C.; Reddy, K.: Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J. Colloid Interface Sci. 336, 406–441 (2009)

    Google Scholar 

  54. Habuda-Stanić, M.; Nujić, M.: Arsenic removal by nanoparticles: a review. Environ. Sci. Pollut. Res. 22, 8094–8123 (2015)

    Google Scholar 

  55. Zhu, H.; Jia, Y.; Wu, X.; Wang, H.: Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 172(2–3), 1591–1596 (2009)

    Google Scholar 

  56. Luther, S.; Borgfeld, N.; Kim, J.; Parsons, J.G.: Removal of arsenic from aqueous solution: a study of the effects of pH and interfering ions using iron oxide nanomaterials. Microchem. J. 101, 30–36 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research sector of Damanhour University, Damanhour, Egypt, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaad F. Hassan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1066 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.F., Hrdina, R. Enhanced Removal of Arsenic from Aqueous Medium by Modified Silica Nanospheres: Kinetic and Thermodynamic Studies. Arab J Sci Eng 47, 281–293 (2022). https://doi.org/10.1007/s13369-021-05357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05357-5

Keywords

Navigation