Skip to main content
Log in

Synthesis of Mesoporous Graphite Functionalized by Nitrogen for Efficient Removal of Safranin Dye Utilizing Rice Husk Ash; Equilibrium Studies and Response Surface Optimization

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Mesoporous graphitic carbon (PG) was successfully synthesized from alkaline treated rice husk ash through chemical activation by phosphoric acid at 800 °C for 1 h and modified by nitric acid to produce porous graphite with nitrogen functional group (N.PG). The morphology and structure of N.PGC were characterized by XRD, SEM and Micromeritics ASAP2010 analyzer at 77 K. N.PG was applied as an adsorbent material for safranin-O dye from aqueous solution. The removal of safranin dye by the synthetic porous graphite with nitrogen functional groups shows higher capacity as compared to the pure phase of porous graphite. The adsorption process was investigated as a function of contact time, adsorbent mass, pH, initial dye concentration and ionic strength. The kinetic studies revealed that the adsorption equilibrium was reached after 480 min and the obtained data well fitted with the pseudo-second-order kinetic model and Elovich kinetic model. The equilibrium adsorption isotherm of safranin by the synthetic N.PG was described with Langmuir isotherm model, and the calculated qmax is 20.66 mg/g. The removal process is highly dependent on the pH value of the solution, and the optimum pH for maximum removal of safranin-O is pH 6. The response surface methodology in conjunction with the central composite rotatable design was used to optimize the sorption process. From the second order polynomial model, the predicted optimum conditions for maximum removal of safranin (100%) are 365 min contact time, 0.3 g dose, 5 g/l NaCl and pH 6 at initial concentration 127 mg/l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.O. Adebowale, B.I. Olu-Owolabi, E.C. Chigbundu, J. Encapsul. & Adsorpt. Sci. 4, 89–104 (2014)

    Article  Google Scholar 

  2. S. Chowdhury, R. Mishra, P. Kushwaha, P. Saha, Asia-Pacific J. Chem. Eng. 7, 236 (2012)

    Article  CAS  Google Scholar 

  3. Z. Song, L. Chen, J. Huand, R. Richards, Nanotechnology 9, 2 (2009)

    Google Scholar 

  4. T. Rahman, N. Urabe, Kishimoto, Procedia Environ. Sci. 17, 270 (2013)

    Article  CAS  Google Scholar 

  5. A. Al-Futaisi, R. Jamrah, Al-Hanai, Desalination 214, 327 (2007)

    Article  CAS  Google Scholar 

  6. M.A. Al-Anber, Desalination 250(3), 885 (2010)

    Article  CAS  Google Scholar 

  7. L.Y. Hsu, T. Hsisheng, Fuel Process. Technol. 64, 155 (2000)

    Article  CAS  Google Scholar 

  8. H. Marsh, F. Rodriguez-Reinoso, Activated Carbon (Elsevier, Oxford, 2006)

    Google Scholar 

  9. A.C. Lua, J. Gua, Langmuir 17, 7112 (2001)

    Article  CAS  Google Scholar 

  10. T. Kopac, A. Toprak, Int. J. Hydrogen Energy 32, 5005 (2007)

    Article  CAS  Google Scholar 

  11. M. Shaban, M.R. Abukhadra, M.G. Shahien, A.A.P. Khan, Environ. Sci. Pollut. Res. 24, 18135 (2017)

    Article  CAS  Google Scholar 

  12. G.S. Simatea, N. Maledia, A. Ochiengc, S. Ndlovua, J. Zhangd, L.F. Walubita, J. Environ. Chem. Eng. 4, 42291 (2016)

    Google Scholar 

  13. M.S. Shafeeyan, W.M.A.W. Daud, A. Houshmand, A. Shamiri, J Anal. & Appl. Pyrolysis 89, 143 (2010)

    Article  CAS  Google Scholar 

  14. T.C. Drage, A. Arenillas, K.M. Smith, C. Pevida, S. Piippo, C.E. Snape, Fuel 86, 22 (2007)

    Article  CAS  Google Scholar 

  15. M. Hema, S. Arivoli, J. Appl. Sci. & Environ. Manage. 12, 43 (2008)

    Google Scholar 

  16. S. Banerjee, G.C. Sharma, S. Dubey, Y.C. Sharma, J. Mater. Environ. Sci. 6(8), 2045 (2015)

    Google Scholar 

  17. S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, Carbon 35, 1799 (1997)

    Article  CAS  Google Scholar 

  18. M.K. Seliem, S. Komarneni, M.R. Abukhadra, Microporous Mesoporous Mater. J. 224, 51 (2016)

    Article  CAS  Google Scholar 

  19. S. Mopoung, Sci. Res. Essays 6(21), 4064 (2011)

    Google Scholar 

  20. A.M. Puziy, O.I. Poddubnaya, A. Martınez-Alonso, F. Suarez-Garcıa, J.M.D. Tascon, Carbon 40, 149 (2002)

    Article  Google Scholar 

  21. U.V. Ladhe, P.R. Patil, IOSR-JESTFT 8, 49 (2014)

    Article  Google Scholar 

  22. B. Manoj, A.G. Kunjomana, K.A. Chandrasekharan, J. Miner. Mater. Char. Eng. 8, 821–832 (2009)

    Google Scholar 

  23. A.M. Puziy, O.I. Poddubnaya, A.M. Alonso, F. Suarez-, J.M. Garcia, D. Tascon, Carbon 43, 2857 (2005)

    Article  CAS  Google Scholar 

  24. T. Budinova, N. Petrov, M. Razvigorova, J. Parra, P. Galiatsatou, Ind. Eng. Chem. Res. 45, 1896 (2006)

    Article  CAS  Google Scholar 

  25. P. Klobes, K. Meyer, R.G. Munro, Porosity and Specific Surface Area Measurements for Solid Materials. Practical guide book (National Institute of Standards and Technology, Washington, 2001)

  26. R. Alvarez, C. Clemente, D.G. Limon, Fuel 82, 2007 (2003)

    Article  CAS  Google Scholar 

  27. M. Shaban, M.R. Abukhadra, A. Hamd, R.R. Amin, A.A. Khalek, J. Environ. Manage. 204, 1989 (2017). https://doi.org/10.1016/j.jenvman.2017.08.048

    Article  Google Scholar 

  28. M. Shaban, M.E.M. Hassouna, F.M. Nasief, M.R. AbuKhadra, Environ. Sci. Pollut .Res. (2017). https://doi.org/10.1007/s11356-017-9942-0

    Google Scholar 

  29. E.A. Mohamed, A.Q. Selim, M.K. Selim, M.R. Abukhadra, J. Mater. Sci. Chem. Eng. 3, 15 (2015)

    CAS  Google Scholar 

  30. M. Shaban, M.R. AbuKhadra, Environ. Earth Sci. 76, 2 (2017)

    Article  Google Scholar 

  31. M.K. Seliem, E.A. Mohamed, A.Q. Selim, M.R. Abukhadra, Int. J. Bioassays 4, 4423 (2015)

    Google Scholar 

  32. H. Demiral, G. Gunduzoglu, Bioresour. Technol. 101, 1675 (2010)

    Article  CAS  Google Scholar 

  33. M.A. Mohammed, A. Shitu, A. Ibrahim, Chem. Sci. 4(1), 91 (2014)

    Google Scholar 

  34. M. Shaban, M.R. AbuKhadra, M.G. Shahien, S.S. Ibrahim, Environ. Chem. Lett. (2017). https://doi.org/10.1007/s10311-017-0658-7

    Google Scholar 

  35. S.G. Wang, X.W. Liu, W.X. Gong, W. Nie, B.Y. Gao, Q.Y. Yue, Chem. Technol. Biotechnol. 82, 698 (2007)

    Article  CAS  Google Scholar 

  36. J.C. Echeverria, M.T. Morera, C. Mazkiaran, J.J. Garrido, Environ. Pollut. 101, 275 (1998)

    Article  CAS  Google Scholar 

  37. C.H. Giles, T.H. McEwan, S.N. Nakhawa, J. Chem. Soc. 3, 3973 (1960)

    Article  Google Scholar 

  38. G. Limousin, J.P. Gaudet, L. Charlet, S. Szenknect, V. Barthes, M. Krimissa, Appl. Geochem. 22, 249 (2007)

    Article  CAS  Google Scholar 

  39. C. Hinz, Geoderma 99, 225 (2001)

    Article  CAS  Google Scholar 

  40. S. Ho, Carbon 42, 2115 (2004)

    Article  CAS  Google Scholar 

  41. L. Lian, G. Li ping, C. Guo, J. Hazard. Mater. 161(1), 126 (2009)

    Article  CAS  Google Scholar 

  42. S. Bagherifam, S. Komarneni, A. Lakzian, A. Fotovat, R. Khorasani, W. Huang, J. Ma, S. Hong, F.S. Cannon, Y. Wang, Appl. Clay Sci. 95, 126 (2014)

    Article  CAS  Google Scholar 

  43. H.K. Boparai, M. Joseph, D.M. O’Carroll, J. Hazard. Mater. 186, 458 (2011)

    Article  CAS  Google Scholar 

  44. M.J. Temkin, V. Pyzhev, Acta Physiochim. URSS 12, 217 (1940)

    Google Scholar 

  45. K.Y. Foo, Bioresour. Technol. 104, 679 (2012)

    Article  CAS  Google Scholar 

  46. M.F. Elkady, M.M. Hussein, M.M. Salama, Am. J. Appl. Chem. 3, 1 (2015)

    Article  CAS  Google Scholar 

  47. V.K. Singh, Master thesis, National Institute of Technology, Rourkela, (2013)

  48. M.A. Akl, A.M. Youssef, M.M. Al-Awadhi, J Anal. Bioanal. Tech. 4, 1 (2013)

    Google Scholar 

  49. X.J. Peng, Z.K. Luan, H.M. Zhang, Chemosphere 63, 300 (2006)

    Article  CAS  Google Scholar 

  50. D.M. Borrok, J.B. Fein, J. Colloid Interface Sci. 286, 110 (2005)

    Article  CAS  Google Scholar 

  51. M.R. Abukhadra, M.K. Seliem, E.A. Mohamed, A.Q. Selim, H.M. Mahmoud, Am. J. Appl. Chem. 3, 179 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa R. Abukhadra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaban, M., Abukhadra, M.R., Mohamed, A.S. et al. Synthesis of Mesoporous Graphite Functionalized by Nitrogen for Efficient Removal of Safranin Dye Utilizing Rice Husk Ash; Equilibrium Studies and Response Surface Optimization. J Inorg Organomet Polym 28, 279–294 (2018). https://doi.org/10.1007/s10904-017-0726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0726-2

Keywords

Navigation