Skip to main content
Log in

Easy production of acetylated cellulose nanofibers from sisal fibers by conventional high-speed blender

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This work aimed to isolate cellulose nanofibers (CNF) from sisal fibers and to impart hydrophobic characteristics through acetylation with acetic anhydride. The sisal fibers were pre-treated using alkaline hydrogen peroxide (AHP) followed by acetylation using acetic anhydride. Acetylated and non-acetylated CNF were then isolated by mechanical defibrillation of pre-treated fibers using a high-speed blender. Both resulting CNF were evaluated using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), transmissions electron microscopy (TEM), thermogravimetric analysis (TGA), and water contact angle measurement. ATR-FTIR results revealed the substitution of hydroxyl groups by some acetyl groups as indicated by the presence of carbonyl and methyl groups for the acetylated CNF (ACNF). The yield of ACNF and CNF obtained in this work was 90% and 86%, respectively. The dispersion studies exhibited that ACNF formed a more stable suspension and dispersed better in acetone than CNF. XRD analysis indicated that the acetylation process decreased the crystallinity index of CNF from 79 to 66%. The average diameter distribution of ACNF and CNF was 5.59 ± 1.45 nm and 6.22 ± 1.97, respectively. Furthermore, without lowering the thermal stability of CNF, ACNF exhibited higher hydrophobicity as high as 87° compared with that of CNF with a 12° contact angle. The resulting ACNF extracted from sisal fibers had great potential application as reinforcement for nanocomposites with a nonpolar polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Kuhnt T, Camarero-Espinosa S (2021) Additive manufacturing of nanocellulose based scaffolds for tissue engineering: beyond a reinforcement filler. Carbohyd Polym 252:117159. https://doi.org/10.1016/j.carbpol.2020.117159

    Article  Google Scholar 

  2. Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87(2):963–979. https://doi.org/10.1016/j.carbpol.2011.08.078

    Article  Google Scholar 

  3. Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod 59:27–34. https://doi.org/10.1016/j.indcrop.2014.04.020

    Article  Google Scholar 

  4. Hassan ML, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibres from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205. https://doi.org/10.1007/s00226-010-0373-z

    Article  Google Scholar 

  5. Xie J, Hse C, De Hoop CF, Hu T, Qi J, Shupe TF (2016) Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohyd Polym 151:725–734. https://doi.org/10.1016/j.carbpol.2016.06.011

    Article  Google Scholar 

  6. Singh M, Kaushik A, Ahuja D (2016) Surface functionalization of nanofibrillated cellulose extracted from wheat straw: effect of process parameters. Carbohyd Polym 150:48–56. https://doi.org/10.1016/j.carbpol.2016.04.109

    Article  Google Scholar 

  7. Nascimento SA, Rezende CA (2018) Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohyd Polym 180:38–45. https://doi.org/10.1016/j.carbpol.2017.09.099

    Article  Google Scholar 

  8. Tao P, Zhang WuZ, Liao X, Nie S (2019) Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: transition of cellulose crystal structure. Carbohyd Polym 214:1–7. https://doi.org/10.1016/j.carbpol.2019.03.012

    Article  Google Scholar 

  9. Hiasa S, Iwamoto S, Endo T, Edashige Y (2014) Isolation of cellulose nanofibrils from mandarin (Citrus unshiu) peel waste. Ind Crops Prod 62:280–285. https://doi.org/10.1016/j.indcrop.2014.08.007

    Article  Google Scholar 

  10. Dhali K, Daver F, Cass P, Adhikari B (2021) Isolation and characterization of cellulose nanomaterials from jute bast fibers. J Environ Chem Eng 9(6):106447. https://doi.org/10.1016/j.jece.2021.106447

    Article  Google Scholar 

  11. Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan E, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohyd Polym 86(4):1790–1798. https://doi.org/10.1016/j.carbpol.2011.07.009

    Article  Google Scholar 

  12. Neenu K, Dominic CM, Begum PS, Parameswaranpillai J, Kanoth BP, David DA, Sajadi SM, Dhanyasree P, Ajithkumar T, Badawi M (2022) Effect of oxalic acid and sulphuric acid hydrolysis on the preparation and properties of pineapple pomace derived cellulose nanofibers and nanopapers. Int J Biol Macromol 209:1745–1759. https://doi.org/10.1016/j.ijbiomac.2022.04.138

    Article  Google Scholar 

  13. Henriksson M, Henriksson G, Berglund L, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polymer J 43(8):3434–3441. https://doi.org/10.1016/j.eurpolymj.2007.05.038

    Article  Google Scholar 

  14. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromol 9(3):1022–1026. https://doi.org/10.1021/bm701157n

    Article  Google Scholar 

  15. Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307. https://doi.org/10.1007/s10570-009-9387-9

    Article  Google Scholar 

  16. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111. https://doi.org/10.1007/s10570-011-9533-z

    Article  Google Scholar 

  17. Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced poly-lactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20(4):991–997. https://doi.org/10.1007/s10924-012-0503-9

    Article  Google Scholar 

  18. Ho TTT, Abe K, Zimmermann T, Yano H (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22:421–433. https://doi.org/10.1007/s10570-014-0518-6

    Article  Google Scholar 

  19. Pereira B, Arantes V (2018) Nanocelluloses from sugarcane biomass. In: Chandel AK, Silveira MHL, Advances in sugarcane biorefinery, 1st edn. Elsevier, pp 179–196. https://doi.org/10.1016/B978-0-12-804534-3.00009-4

  20. Sofla MRK, Batchelor W, Kosinkova J, Pepper R, Brown R, Rainey T (2019) Cellulose nanofibres from bagasse using a high speed blender and acetylation as a pretreatment. Cellulose 26:4799–4814. https://doi.org/10.1007/s10570-019-02441-w

    Article  Google Scholar 

  21. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose. Nanofibers Nanoscale 3:71–85. https://doi.org/10.1039/C0NR00583E

    Article  Google Scholar 

  22. Madivoli ES, Kareru PG, Gachanja AN, Mugo SM, Sujee DM, Fromm KM (2022) Isolation of cellulose nanofibers from Oryza sativa residues via TEMPO mediated oxidation. J Nat Fibers 19(4):1310–1322. https://doi.org/10.1080/15440478.2020.1764454

    Article  Google Scholar 

  23. Ho MC, Ong VZ, Wu TY (2019) Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization—a review. Renew Sustain Energy Rev 112:75–86. https://doi.org/10.1016/j.rser.2019.04.082

    Article  Google Scholar 

  24. Nakagaito AN (2015) Cellulose nanofiber extraction from grass by a modified kitchen blender. Mod Phys Lett B 29(6–7):1540039. https://doi.org/10.1142/S0217984915400394

    Article  Google Scholar 

  25. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund A, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. https://doi.org/10.1007/s10853-009-3874-0

    Article  Google Scholar 

  26. Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohyd Polym 83(4):1575–1581. https://doi.org/10.1016/j.carbpol.2010.10.016

    Article  Google Scholar 

  27. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207. https://doi.org/10.1002/pc.20461

    Article  Google Scholar 

  28. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. https://doi.org/10.1007/s10570-010-9405-y

    Article  Google Scholar 

  29. Nogi M, Abe K, Handa K, Nakatsubo F, Ifuku S, Yano H (2006) Property enhancement of optically transparent bionanofiber composites by acetylation. Appl Phys Lett 89:233123. https://doi.org/10.1063/1.2403901

    Article  Google Scholar 

  30. Pandey JK, Nakagaito AN, Takagi H (2013) Fabrication and applications of cellulose nanoparticle-based polymer composites. Polym Eng Sci 53:1–8. https://doi.org/10.1002/pen.23242

    Article  Google Scholar 

  31. Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohyd Polym 102:369–375. https://doi.org/10.1016/j.carbpol.2013.11.067

    Article  Google Scholar 

  32. Zimmermann MVG, da Silva MP, Zattera AJ, Santana RMC (2017) Effect of nanocellulose fibers and acetylated nanocellulose fibers on properties of poly(ethylene-co-vinyl acetate) foams. J Appl Polym Sci 134:44760. https://doi.org/10.1002/app.44760

    Article  Google Scholar 

  33. Yuan Y, Liu H, Su J, Qin X, Qi H (2021) Acetylated cellulose nanofibers fabricated through chemo-mechanical process for stabilizing pickering emulsion. Cellulose 28:9677–9687. https://doi.org/10.1007/s10570-021-04141-w

    Article  Google Scholar 

  34. Mondragon G, Fernandes S, Retegi A, Peña C, Algar R, Eceia A, Arbelaiz A (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crops Prod 55:140–148. https://doi.org/10.1016/j.indcrop.2014.02.014

    Article  Google Scholar 

  35. Trifol J, Sillard C, Plackett D, Szabo P, Bras J, Daugaard AE (2017) Chemically extracted nanocellulose from sisal fibres by a simple and industrially relevant process. Cellulose 24:107–118. https://doi.org/10.1007/s10570-016-1097-5

    Article  Google Scholar 

  36. Serra-Parareda F, Tarres Q, Sanchez-Salvador JL, Campano C, Pelach MA, Mutje P, Negro C, Delgado-Aguilar M (2021) Tuning morphology and structure of non-woody nanocellulose: ranging between nanofibers and nanocrystals. Ind Crop Prod 171:113877. https://doi.org/10.1016/j.indcrop.2021.113877

    Article  Google Scholar 

  37. Yu W, Yi Y, Wang H, Yang Y, Zeng L, Tan Z (2021) Light-colored cellulose nanofibrils produced from raw sisal fibers without costly bleaching. Ind Crops Prod 172:114009. https://doi.org/10.1016/j.indcrop.2021.114009

    Article  Google Scholar 

  38. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose-based fibres. Prog Polym Sci 24:221–274. https://doi.org/10.1016/S0079-6700(98)00018-5

    Article  Google Scholar 

  39. Bismarck A, Aranberri-Askargorta I, Springer J, Mohanty AK, Misra M, Hinrichsen G, Czapla S (2001) Surface characterization of natural fibers; surface properties and the water up-take behavior of modified sisal and coir fibers. Green Chem 3:100–107. https://doi.org/10.1039/B100365H

    Article  Google Scholar 

  40. Fonseca ADS, Panthapulakkal S, Konar SK, Sain M, Bufalinof L, Raabe J, Miranda IPDA, Martins MA, Tonoli GHD (2019) Improving cellulose nanofibrillation of non-wood fiber using alkaline and bleaching pre-treatments. Ind Crops Prod 131:203–212. https://doi.org/10.1016/j.indcrop.2019.01.046

    Article  Google Scholar 

  41. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  42. Chesson A (1981) Effects of sodium hydroxide on cereal straws in relation to the enhanced degradation of structural polysaccharides by rumen microorganisms. J Sci Food Agric 32:745–758. https://doi.org/10.1002/jsfa.2740320802

    Article  Google Scholar 

  43. Qin C, Du Y, Xiao L (2002) Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan. Polym Degrad Stab 76(2):211–218. https://doi.org/10.1016/S0141-3910(02)00016-2

    Article  Google Scholar 

  44. Chaker A, Alila S, Mutje P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20:2863–2875. https://doi.org/10.1007/s10570-013-0036-y

    Article  Google Scholar 

  45. Prakobna K, Kisonen V, Xu C, Berglund LA (2015) Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels. J Mater Sci 50:7413–7423. https://doi.org/10.1007/s10853-015-9299-z

    Article  Google Scholar 

  46. Zhang N, Tao P, Lu Y, Nie S (2019) Effect of lignin on the thermal stability of cellulose nanofibrils produced from bagasse pulp. Cellulose 26:7823–7835. https://doi.org/10.1007/s10570-019-02657-w

    Article  Google Scholar 

  47. Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites. Ind Crops Prod 71:44–53. https://doi.org/10.1016/j.indcrop.2015.03.075

    Article  Google Scholar 

  48. Goh KY, Ching YC, Chuah CH, Abdullah LC, Liou NS (2016) Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23(1):379–390. https://doi.org/10.1007/s10570-015-0812-y

    Article  Google Scholar 

  49. Oun AA, Rhim JW (2017) Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohyd Polym 174:484–492. https://doi.org/10.1016/j.carbpol.2017.06.121

    Article  Google Scholar 

  50. Haleem N, Arshad M, Shahid M, Tahir MA (2014) Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohyd Polym 113:249–255. https://doi.org/10.1016/j.carbpol.2014.07.023

    Article  Google Scholar 

  51. Wang J, Dang M, Duan C, Zhao W, Wang K (2017) Carboxymethylated cellulose fibers as low-cost and renewable adsorbent materials. Ind Eng Chem Res 56:14940–14948. https://doi.org/10.1021/acs.iecr.7b03697

    Article  Google Scholar 

  52. Liu Y, Liu L, Wang K, Zhang H, Yuan Y, Wei H, Wang X, Duan Y, Zhou L, Zhang J (2020) Modified ammonium persulfate oxidations for efficient preparation of carboxylated cellulose nanocrystals. Carbohyd Polym 229:115572. https://doi.org/10.1016/j.carbpol.2019.115572

    Article  Google Scholar 

  53. Lei W, Fang C, Zhou X, Yin Q, Pan S, Yang R, Liu D, Ouyang Y (2018) Cellulose nanocrystals obtained from office waste paper and their potential application in PET packing materials. Carbohyd Polym 181:376–385. https://doi.org/10.1016/j.carbpol.2017.10.059

    Article  Google Scholar 

  54. Cheng S, Huang A, Wang S, Zhang Q (2016) Effect of different heat treatment temperatures on the chemical composition and structure of Chinese fir wood. BioResources 11(2):4006–4016. https://doi.org/10.15376/biores.11.2.4006-4016

    Article  Google Scholar 

  55. Peng F, Peng P, Xu F, Sun R-C (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30:879–903. https://doi.org/10.1016/j.biotechadv.2012.01.018

    Article  Google Scholar 

  56. Abraham E, Kam D, Nevo Y, Slattegard R, Rivkin A, Lapidot S, Shoseyov O (2016) Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8(41):28086–28095. https://doi.org/10.1021/acsami.6b09852

    Article  Google Scholar 

  57. Çetin NS, Tingaut P, Özmen N, Henry N, Harper D, Dadmun M, Sèbe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9(10):997–1003. https://doi.org/10.1002/mabi.200900073

    Article  Google Scholar 

  58. Xu J, Wu Z, Wu Q, Kuang Y (2020) Acetylated cellulose nanocrystals with high-crystallinity obtained by one-step reaction from the traditional acetylation of cellulose. Carbohyd Polym 229:115553. https://doi.org/10.1016/j.carbpol.2019.115553

    Article  Google Scholar 

  59. Adebajo MO, Frost RL (2004) Acetylation of raw cotton for oil spill cleanup application: an FTIR and 13C MAS NMR spectroscopic investigation. Spectrochim Acta Part A Mol Biomol Spectrosc 60(10):2315–2321. https://doi.org/10.1016/j.saa.2003.12.005

    Article  Google Scholar 

  60. Boufi S, Chaker A (2016) Easy production of cellulose nanofibrils from corn stalk by a conventional high speed blender. Ind Crops Prod 93:39–47. https://doi.org/10.1016/j.indcrop.2016.05.030

    Article  Google Scholar 

  61. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  Google Scholar 

  62. Hu H, Li H, Zhang Y, Chen Y, Huang Z, Huang A, Zhu Y, Qin X, Lin B (2015) Green mechanical activation-assisted solid phase synthesis of cellulose esters using a co-reactant: effect of chain length of fatty acids on reaction efficiency and structure properties of products. RSC Adv 5:20656–20662. https://doi.org/10.1039/C5RA02393A

    Article  Google Scholar 

  63. Ramírez JAA, Hoyos CG, Arroyo S, Cerrutti P, Foresti ML (2016) Acetylation of bacterial cellulose catalyzed by citric acid: use of reaction conditions for tailoring the esterification extent. Carbohyd Polym 153:686–695. https://doi.org/10.1016/j.carbpol.2016.08.009

    Article  Google Scholar 

  64. Takkalkar P, Griffin G, Kao N (2019) Enhanced mechanical and barrier performance of poly (lactic acid) based nanocomposites using surface acetylated starch nanocrystals. J Polym Environ 27:2078–2088. https://doi.org/10.1007/s10924-019-01484-1

    Article  Google Scholar 

  65. Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry. Wiley, New York. https://doi.org/10.1002/9781118520994

    Book  Google Scholar 

  66. Madivoli ES, Kareru PG, Gachanja AN, Mugo SM, Makhanu DS (2019) Synthesis and characterization of dialdehyde cellulose nanofibers from O. sativa husks. SN Appl Sci 1:723. https://doi.org/10.1007/s42452-019-0769-9

    Article  Google Scholar 

  67. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls. Biores Technol 99:1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029

    Article  Google Scholar 

  68. Senthamaraikannan P, Kathiresan M (2018) Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L. Carbohyd Polym 186:332–343. https://doi.org/10.1016/j.carbpol.2018.01.072

    Article  Google Scholar 

  69. Kathirselvam M, Kumaravel A, Arthanarieswaran V, Saravanakumar S (2019) Isolation and characterization of cellulose fibers from Thespesia populnea barks: a study on physicochemical and structural properties. Int J Biol Macromol 129:396–406. https://doi.org/10.1016/j.ijbiomac.2019.02.044

    Article  Google Scholar 

  70. Syafri E, Sari NH, Mahardika M, Amanda P, Ilyas RA (2022) Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment. Int J Biol Macromol 200:25–33. https://doi.org/10.1016/j.ijbiomac.2021.12.111

    Article  Google Scholar 

  71. Sukmawan R, Rahmanta AP, Saputri LH (2022) The effect of repeated alkali pretreatments on the morphological characteristics of cellulose from oil palm empty fruit bunch fiber-reinforced epoxy adhesive composite. Int J Adhes Adhes 114:103095. https://doi.org/10.1016/j.ijadhadh.2022.103095

    Article  Google Scholar 

  72. Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411. https://doi.org/10.1021/la9028595

    Article  Google Scholar 

  73. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromol 8:1973–1978. https://doi.org/10.1021/bm070113b

    Article  Google Scholar 

  74. Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2(1995):111–127. https://doi.org/10.1007/BF00816384.10.1007/BF00816384

    Article  Google Scholar 

  75. Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gańán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohyd Polym 76(1):51-e59. https://doi.org/10.1016/j.carbpol.2008.09.024

    Article  Google Scholar 

  76. Pelissari F, Sobral PA, Menegalli F (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21(1):417-e432. https://doi.org/10.1007/s10570-013-0138-6

    Article  Google Scholar 

  77. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017-e1023. https://doi.org/10.1007/s10570-009-9334-9

    Article  Google Scholar 

  78. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. https://doi.org/10.1007/s10570-007-9145-9

    Article  Google Scholar 

  79. Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohyd Polym 83(4):1834–1842. https://doi.org/10.1016/j.carbpol.2010.10.047

    Article  Google Scholar 

  80. Yang Z, Xu S, Ma X, Wang S (2008) Characterization and acetylation behavior of bamboo pulp. Wood Sci Technol 42(8):621–632. https://doi.org/10.1007/s00226-008-0194-5

    Article  Google Scholar 

  81. Quiévy N, Jacquet N, Sclavons M, Deroanne C, Paquot M, Devaux J (2010) Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polym Degrad Stab 95(3):306–314. https://doi.org/10.1016/j.polymdegradstab.2009.11.020

    Article  Google Scholar 

  82. Zhang K, Zhang Y, Yan D, Zhang C, Nie S (2018) Enzyme-assisted mechanical production of cellulose nanofibrils: thermal stability. Cellulose 25:5049–5061. https://doi.org/10.1007/s10570-018-1928-7

    Article  Google Scholar 

  83. Listyanda RF, Wildan MW, Ilman MN (2020) Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon 6:e05486. https://doi.org/10.1016/j.heliyon.2020.e05486

    Article  Google Scholar 

  84. Matsuoka S, Kawamoto H, Saka S (2014) What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. J Anal Appl Pyrol 106:138–146. https://doi.org/10.1016/j.jaap.2014.01.011

    Article  Google Scholar 

  85. Cho SY, Lee ME, Kwak HW, Jin HJ (2018) Surface-modified cellulose nanocrystal-incorporated poly(butylene succinate) nanocomposites. Fibers Polymers 19:1395–1402. https://doi.org/10.1007/s12221-018-8138-7

    Article  Google Scholar 

  86. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5(5):1671–1677. https://doi.org/10.1021/bm034519+

    Article  Google Scholar 

  87. Cheng L, Zhang D, Gu Z, Li Z, Hong Y, Li C (2018) Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films. Int J Biol Macromol 111:959–966. https://doi.org/10.1016/j.ijbiomac.2018.01.056

    Article  Google Scholar 

  88. Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392. https://doi.org/10.1007/s10570-013-0019-z

    Article  Google Scholar 

  89. Kontturi KS, Biegaj K, Mautner A, Woodward RT, Wilson BP, Johansson LS, Lee KY, Heng JYY, Bismarck A, Kontturi E (2017) Noncovalent surface modification of cellulose nanopapers by adsorption of polymers from aprotic solvents. Langmuir 33:5707–5712. https://doi.org/10.1021/acs.langmuir.7b01236

    Article  Google Scholar 

Download references

Funding

This project was supported by the Ministry of Finance of the Republic of Indonesia through the Indonesia Endowment Fund for Education (LPDP) for a Doctoral scholarship to one of us (Mr. Romi Sukmawan) with contract no. KEP-826/LPDP/LPDP.3/2021.

Author information

Authors and Affiliations

Authors

Contributions

Romi Sukmawan: resources, methodology, investigation, writing—original draft, and revision of the manuscript; Kusmono: conceptualization, supervision, reviewing, and editing; Muhammad Waziz Wildan: Supervision, reviewing, and editing.

Corresponding author

Correspondence to Kusmono.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukmawan, R., Kusmono & Wildan, M.W. Easy production of acetylated cellulose nanofibers from sisal fibers by conventional high-speed blender. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04428-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04428-x

Keywords

Navigation