Skip to main content
Log in

Efficient degradation of endocrine disruptor pesticides by biochar iron oxide-based nanocomposite: green synthesis, kinetics, and photoactivity

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract  

Photocatalysis is considered a promising methodology for removing pesticides from wastewater, given its cost-effectiveness and environmental benignity. Pesticide toxicity and bioaccumulation have raised environmental issues, underlining the necessity for efficient removal techniques based on novel nanomaterials. Here, biochar (BC) supported α-FeOOH and β-FeOOH (BC@α-FeOOH, BC@β-FeOOH) nanocomposites were synthesized for the sequential photocatalytic degradation of Endosulfan (ES) and 4,4-DDD pesticides. Waste peels of citrus limetta converted into useful BC. Synthesized BC, BC@α-FeOOH, and BC@β-FeOOH nanocomposite characterized by microscopic and spectroscopic techniques. For the removal, sunlight-active BC@-FeOOH demonstrated exceptional efficacy in mineralizing pesticides at the ideal pollutant concentration (20 mgL−1). Maximum degradation achieved by biosynthesized BC@α-FeOOH (ES: 98%; 4,4-DDD: 92%) nanocomposite followed by BC@β-FeOOH (ES: 80%; DDD: 76%) supported their excellency attributed to the higher value of zeta potential (− 14.3 mV), enhanced surface area (40 m2g−1) and lower value (1.9 eV) of the band gap. The fast decline in pesticide concentration, followed by a gradual decrease, demonstrated first-order kinetics triggered by Langmuir adsorption. Scavenger analysis indicated the presence of O2, hydroxyl radicals, and holes responsible for pesticide degradation. Finally, hybrid BC@α-FeOOH and BC@β-FeOOH nanocomposites may be viable alternative catalysts for industrial applications due to their high surface activity, charge separation, stability, and reusability (n = 8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References   

  1. Mudhoo A, Bhatnagar A, Rantalankila M, Srivastava V, Sillanpää M (2019) Endosulfan removal through bioremediation, photocatalytic degradation, adsorption and membrane separation processes: a review. Chem Eng J 360:912–928. https://doi.org/10.1016/j.cej.2018.12.055

    Article  Google Scholar 

  2. Allinson G, Allinson M, Bui A, Zhang P, Croatto G, Wightwick A, Rose G, Walters R (2016) Pesticide and trace metals in surface waters and sediments of rivers entering the Corner Inlet Marine National Park, Victoria. Australia Environ Sci Poll Res 23(6):5881–5891. https://doi.org/10.1007/s11356-015-5795-6

    Article  Google Scholar 

  3. Li P, Wang Y, Huang W, Yao H, Xue B, Xu Y (2014) Sixty-year sedimentary record of DDTs, HCHs, CHLs and endosulfan from emerging development gulfs: a case study in the Beibu Gulf, South China Sea. Bull Environ Contam Toxicol 92(1):23–29. https://doi.org/10.1007/s00128-013-1130-4

    Article  Google Scholar 

  4. Bussian BM, Pandelova M, Lehnik-Habrink P, Aichner B, Henkelmann B, Schramm KW (2015) Persistent endosulfan sulfate is found with highest abundance among endosulfan I, II, and sulfate in German forest soils. Environ Poll 206:661–666. https://doi.org/10.1016/j.envpol.2015.08.023

    Article  Google Scholar 

  5. Chau ND, Sebesvari Z, Amelung W, Renaud FG (2015) Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ Sci Poll Res 22(12):9042–9058. https://doi.org/10.1007/s11356-014-4034-x

    Article  Google Scholar 

  6. Qu C, Xing X, Albanese S, Doherty A, Huang H, Lima A, De Vivo B (2015) Spatial and seasonal variations of atmospheric organochlorine pesticides along the plain-mountain transect in central China: regional source vs. long-range transport and air–soil exchange. Atmos Environ 122:31–40. https://doi.org/10.1016/j.atmosenv.2015.09.008

    Article  Google Scholar 

  7. Bajaj A, Pathak A, Mudiam MR, Mayilraj S, Manickam N (2010) Isolation and characterization of a Pseudomonas sp. strain IITR01 capable of degrading α-endosulfan and endosulfan sulfate. J Appl Microbiol 109(6):2135–43. https://doi.org/10.1111/j.1365-2672.2010.04845.x

    Article  Google Scholar 

  8. Dores EF, Spadotto CA, Weber OL, Dalla Villa R, Vecchiato AB, Pinto AA (2016) Environmental behavior of chlorpyrifos and endosulfan in a tropical soil in central Brazil. J Agricul Food Chem 64(20):3942–3948. https://doi.org/10.1021/acs.jafc.5b04508

    Article  Google Scholar 

  9. Odukkathil G, Vasudevan N (2016) Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation. J Environ Manag 165:72–80. https://doi.org/10.1016/j.jenvman.2015.09.020

    Article  Google Scholar 

  10. Li Q, Wang X, Song J, Sui H, Huang L, Li L (2012) Seasonal and diurnal variation in concentrations of gaseous and particulate phase endosulfan. Atmos Environ 61:620–626. https://doi.org/10.1016/j.atmosenv.2012.07.068

    Article  Google Scholar 

  11. Fava L, Orru MA, Crobe A, Caracciolo AB, Bottoni P, Funari E (2005) Pesticide metabolites as contaminants of groundwater resources: assessment of the leaching potential of endosulfan sulfate, 2, 6-dichlorobenzoic acid, 3, 4-dichloroaniline, 2, 4-dichlorophenol and 4-chloro-2-methylphenol. Microchem J 79(1–2):207–211. https://doi.org/10.1016/j.microc.2004.10.009

    Article  Google Scholar 

  12. Zhang J, Qin J, Zhao C, Liu C, Xie H, Liang S (2015) Response of bacteria and fungi in soil microcosm under the presence of pesticide endosulfan. Water, Air, Soil Poll 226(4):1–9. https://doi.org/10.1007/s11270-015-2309-6

    Article  Google Scholar 

  13. Bamidele A, Omoregie IP, Esen U, Saliu JK (2022) Biosequestration potentials of Tenuisentis niloticus (Meyer, 1932) (Acanthocephala: Tenuisentidae) on organochlorine pesticide burden in Heterotis niloticus (Cuvier, 1829)(Actinopterygii: Arapaimidae) from Lekki lagoon, Lagos. Nigeria. Environ Chall 6:100414. https://doi.org/10.1016/j.envc.2021.100414

    Article  Google Scholar 

  14. Sapmaz C, Firat T, Kukner A, Bozcaarmutlu A (2020) Modulation of xenobiotic metabolizing enzyme activities in rat liver by co-administration of morin, endosulfan, and 7, 12-dimethylbenz [a] anthracene. Drug Chem Toxic 43(1):13–21. https://doi.org/10.1080/01480545.2018.1471089

    Article  Google Scholar 

  15. Sajid MW, Shamoon M, Randhawa MA, Asim M, Chaudhry AS (2016) The impact of seasonal variation on organochlorine pesticide residues in buffalo and cow milk of selected dairy farms from Faisalabad region. Environ Monit Assess 188(10):1–6. https://doi.org/10.1007/s10661-016-5594-7

    Article  Google Scholar 

  16. Nawaz A, Razpotnik A, Rouimi P, De Sousa G, Cravedi JP, Rahmani R (2014) Cellular impact of combinations of endosulfan, atrazine, and chlorpyrifos on human primary hepatocytes and HepaRG cells after short and chronic exposures. Cell Bio Toxic 30(1):17–29. https://doi.org/10.1007/s10565-013-9266-x

    Article  Google Scholar 

  17. Milesi MM, Varayoud J, Ramos JG, Luque EH (2017) Uterine ERα epigenetic modifications are induced by the endocrine disruptor endosulfan in female rats with impaired fertility. Mol Cellular Endocrinol 454:1–11. https://doi.org/10.1016/j.mce.2017.05.028

    Article  Google Scholar 

  18. Syed JH, Alamdar A, Mohammad A, Ahad K, Shabir Z, Ahmed H, Ali SM, Sani SG, Bokhari H, Gallagher KD, Ahmad I (2014) Pesticide residues in fruits and vegetables from Pakistan: a review of the occurrence and associated human health risks. Environ Sci Poll Res 21(23):13367–13393. https://doi.org/10.1007/s11356-014-3117-z

    Article  Google Scholar 

  19. Patočka J, Wu Q, França TC, Ramalho TC, Pita R, Kuča K (2016) Clinical aspects of the poisoning by the pesticide endosulfan. Quim Nova 39:987–994. https://doi.org/10.5935/0100-4042.20160102

    Article  Google Scholar 

  20. Menezes RG, Qadir TF, Moin A, Fatima H, Hussain SA, Madadin M, Pasha SB, Al Rubaish FA, Senthilkumaran S (2017) Endosulfan poisoning: An overview. J Forensic Legal Med 51:27–33. https://doi.org/10.1016/j.jflm.2017.07.008

    Article  Google Scholar 

  21. Dilna C, Prasanth GK, Kanade SR (2018) Molecular interaction studies of endosulfan with the cholinergic pathway targets–an insilico approach. Comput Toxic 5:1–7. https://doi.org/10.1016/j.comtox.2017.11.002

    Article  Google Scholar 

  22. Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42(3):766–770. https://doi.org/10.1021/es7025032

    Article  Google Scholar 

  23. Harikumar PS, Jesitha K, Megha T, Kokkal K (2014) Persistence of endosulfan in selected areas of Kasaragod district, Kerala. Current Sci 16:1421–1429 (https://www.jstor.org/stable/24102490)

    Google Scholar 

  24. Li Z (2018) Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: An analysis. J Environ Manag 205:163–173. https://doi.org/10.1016/j.jenvman.2017.09.070

    Article  Google Scholar 

  25. Scheringer M, Strempel S, Hukari S, Ng CA, Blepp M, Hungerbuhler K (2012) How many persistent organic pollutants should we expect? Atmos Poll Res 3(4):383–391. https://doi.org/10.5094/APR.2012.044

    Article  Google Scholar 

  26. Ma J, Pan LB, Yang XY, Liu XL, Tao SY, Zhao L, Qin XP, Sun ZJ, Hou H, Zhou YZ (2016) DDT, DDD, and DDE in soil of Xiangfen County, China: residues, sources, spatial distribution, and health risks. Chemos 163:578–583. https://doi.org/10.1016/j.chemosphere.2016.08.050

    Article  Google Scholar 

  27. ATSDR, 2002. Toxicological Profile for DDT, DDE, and DDD Access via ATSDR Website. Agency for Toxic Substances and Disease Registry, Atlanta, USA. http:// www.atsdr.cdc.gov/toxprofiles

  28. ATSDR. 2017. DDD, DDE, DDT. Full SPL data. Substance priority list (SPL) resource page. Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention. http://www.atsdr.cdc.gov/SPL/resources/index.html

  29. Freire C, Koifman RJ, Koifman S (2015) Hematological and hepatic alterations in Brazilian population heavily exposed to organochlorine pesticides. J Toxicol Environ Health 78(8):534–548. https://doi.org/10.1080/15287394.2014.999396

    Article  Google Scholar 

  30. Lee DH, Lind PM, Jacobs DR Jr, Salihovic S, van Bavel B, Lind L (2016) Association between background exposure to organochlorine pesticides and the risk of cognitive impairment: a prospective study that accounts for weight change. Environ Internat 89:179–184. https://doi.org/10.1016/j.envint.2016.02.001

    Article  Google Scholar 

  31. Kim SA, Lee YM, Lee HW, Jacobs DR Jr, Lee DH (2015) Greater cognitive decline with aging among elders with high serum concentrations of organochlorine pesticides. PloS 10(6):e0130623. https://doi.org/10.1371/journal.pone.0130623

    Article  Google Scholar 

  32. Richardson JR, Roy A, Shalat SL, Von Stein RT, Hossain MM, Buckley B, Gearing M, Levey AI, German DC (2014) Elevated serum pesticide levels and risk for Alzheimer disease. JAMA Neurol 71(3):284–290. https://doi.org/10.1001/jamaneurol.2013.6030

    Article  Google Scholar 

  33. Keshu RM, Yadav J, Meenu CS, Shanker U (2021) An updated review on synthetic approaches of green nanomaterials and their application for removal of water pollutants: current challenges, assessment and future perspectives. J Environ Chem Eng 9(6):106763. https://doi.org/10.1016/j.jece.2021.106763

    Article  Google Scholar 

  34. Rani M, Keshu YJ, Shanker U (2021) Green synthesis of sunlight responsive zinc oxide coupled cadmium sulfide nanostructures for efficient photodegradation of pesticides. J Coll Interf Sci 601:689–703

    Article  Google Scholar 

  35. Zhang S, Shi C, Nie Y, Xing B, Wen X, Cheng S (2023) Separation experiment and mechanism study on PVC microplastics removal from aqueous solutions using high-gradient magnetic filter. J Water Proc Eng 51:103495. https://doi.org/10.1016/j.jwpe.2023.103495

    Article  Google Scholar 

  36. Khavar AHC, Moussavi G, Mahjoub AR, Satari M, Abdolmaleki P (2018) Synthesis and visible-light photocatalytic activity of In, S-TiO2@ rGO nanocomposite for degradation and detoxification of pesticide atrazine in water. Chem Eng J 345:300–311. https://doi.org/10.1016/j.cej.2018.03.095

    Article  Google Scholar 

  37. Shi C, Zhang S, Zhao J, Ma J, Wu H, Sun H, Cheng S (2022) Experimental study on removal of microplastics from aqueous solution by magnetic force effect on the magnetic sepiolite. Sep Purif Technol 288:120564. https://doi.org/10.1016/j.seppur.2022.120564

  38. Truc NTT, Duc DS, Van Thuan D, Al Tahtamouni T, Pham TD, Hanh NT, Le Chi NTP (2019) The advanced photocatalytic degradation of atrazine by direct Z-scheme Cu doped ZnO/g-C3N4. Appl Surf Sci 489:875–882. https://doi.org/10.1016/j.apsusc.2019.05.360

    Article  Google Scholar 

  39. Qu C, Albanese S, Lima A, Li J, Doherty AL, Qi S, De Vivo B (2017) Residues of hexachlorobenzene and chlorinated cyclodiene pesticides in the soils of the Campanian Plain, southern Italy. Environ Poll 231:1497–1506. https://doi.org/10.1016/j.envpol.2017.08.100

    Article  Google Scholar 

  40. Alikhani N, Farhadian M, Goshadrou A, Tangestaninejad S, Eskandari P (2021) Photocatalytic degradation and adsorption of herbicide 2, 4-dichlorophenoxyacetic acid from aqueous solution using TiO2/BiOBr/Bi2S3 nanostructure stabilized on the activated carbon under visible light. Environ Nanotechnol Monit Manag 15:100415. https://doi.org/10.1016/j.enmm.2020.100415

    Article  Google Scholar 

  41. Muhambihai P, Rama V, Subramaniam P (2020) Photocatalytic degradation of aniline blue, brilliant green and direct red 80 using NiO/CuO, CuO/ZnO and ZnO/NiO nanocomposites. Environ Nanotechnol Monit Manag 14:100360. https://doi.org/10.1016/j.enmm.2020.100360

    Article  Google Scholar 

  42. Abbas T, Wadhawan T, Khan A, McEvoy J, Khan E (2019) Iron turning waste media for treating Endosulfan and Heptachlor contaminated water. Sci Total Environ 685:124–133. https://doi.org/10.1016/j.scitotenv.2019.05.424

    Article  Google Scholar 

  43. Sivagami K, Vikraman B, Krishna RR, Swaminathan T (2016) Chlorpyrifos and Endosulfan degradation studies in an annular slurry photo reactor. Ecotox Environ Saf 134:327–331. https://doi.org/10.1016/j.ecoenv.2015.08.015

    Article  Google Scholar 

  44. Cong L, Guo J, Liu J, Shi H, Wang M (2015) Rapid degradation of endosulfan by zero-valent zinc in water and soil. J Environ Manag 150:451–455. https://doi.org/10.1016/j.jenvman.2014.12.028

    Article  Google Scholar 

  45. Ismael AM, El-Shazly AN, Gaber SE, Rashad MM, Kamel AH, Hassan SS (2020) Novel TiO2/GO/CuFe2O4 nanocomposite: a magnetic, reusable and visible-light-driven photocatalyst for efficient photocatalytic removal of chlorinated pesticides from wastewater. RSC Adv 10:34806–34814. https://doi.org/10.1039/D0RA02874F

    Article  Google Scholar 

  46. Kovacs ED, Kovacs MH, Senila M, Bolos D, Aschilean I (2019) Past Used Emergent pesticide removal efficiency from water environment by zeolites with different granule sizes. Int Multidiscip Sci Geo Conf: SGEM 19(5.2):587–593. https://doi.org/10.5593/sgem2019/5.2/S20.073

    Article  Google Scholar 

  47. Sayles GD, You G, Wang M, Kupferle MJ (1997) DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol 31(12):3448–3454. https://doi.org/10.1021/es9701669

    Article  Google Scholar 

  48. Cheng L, Ji Y, Liu X, Mu L, Zhu J (2021) Sorption mechanism of organic dyes on a novel self-nitrogen-doped porous graphite biochar: Coupling DFT calculations with experiments. Chem Eng Sci 242:116739. https://doi.org/10.1016/j.ces.2021.116739

    Article  Google Scholar 

  49. Cheng H, Bian Y, Wang F, Jiang X, Ji R, Gu C, Yang X, Song Y (2019) Green conversion of crop residues into porous carbons and their application to efficiently remove polycyclic aromatic hydrocarbons from water: sorption kinetics, isotherms and mechanism. Bioresource Technol 284:1–8. https://doi.org/10.1016/j.biortech.2019.03.104

    Article  Google Scholar 

  50. Luo F, Liu D, Cao T, Cheng H, Kuang J, Deng Y, Xie W (2021) Study on broadband microwave absorbing performance of gradient porous structure. Adv Comp Hybrid Mater 4:591–601. https://doi.org/10.1007/s42114-021-00275-4

    Article  Google Scholar 

  51. Sun Z, Qu K, Li J, Yang S, Yuan B, Huang Z, Guo Z (2021) Self-template biomass-derived nitrogen and oxygen co-doped porous carbon for symmetrical supercapacitor and dye adsorption. Adva Composit Hybrid Mater 4(4):1413–1424. https://doi.org/10.1007/s42114-021-00352-8

    Article  Google Scholar 

  52. Zhao C, Wang B, Theng BK, Wu P, Liu F, Wang S, Lee X, Chen M, Li L, Zhang X (2021) Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: a review. Sci Total Environ 767:145305

  53. Liang J, Fang Y, Luo Y, Zeng G, Deng J, Tan X et al (2019) Magnetic nanoferromanganese oxides modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride. Environ Sci Pollut Res 26(2019):5892–5903. https://doi.org/10.1007/s11356-018-4033-4

    Article  Google Scholar 

  54. Wang J, Sun C, Huang QX, Chi Y, Yan JH (2021) Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars. J Hazard Mater 419:126486. https://doi.org/10.1016/j.jhazmat.2021.126486

  55. Wu J, Yang J, Huang G, Xu C, Lin B (2020) Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B. J Cleaner Prod 251:119717. https://doi.org/10.1016/j.jclepro.2019.119717

    Article  Google Scholar 

  56. Yadav J, Rani M, Shanker U (2022) An integrated hybrid nanoplatform with polymer coating: zinc based green nanocomposites with improved photoactivity under sunlight irradiation. J Environ Chem Eng 10(3):107452. https://doi.org/10.1016/j.jece.2022.107452

    Article  Google Scholar 

  57. Purbia R, Paria S (2108) Green synthesis of single-crystalline akaganeite nanorods for peroxidase mimic colorimetric sensing of ultralow-level vitamin B1 and sulfide ions. ACS Appl Nano Mater 1(3):1236–1246. https://doi.org/10.1021/acsanm.7b00390

    Article  Google Scholar 

  58. Godwin J, Abdus-Salam N, Haleemat AI, Panda PK, Panda J, Tripathy BC (2022) Facile synthesis of rod-like α-FeOOH nanoparticles adsorbent and its mechanism of sorption of Pb (II) and indigo carmine in batch operation. Inorg Chem Comm 140:109346. https://doi.org/10.1016/j.inoche.2022.109346

    Article  Google Scholar 

  59. Rajendran N, Kang D, Han J, Gurunathan B (2022) Process optimization, economic and environmental analysis of biodiesel production from food waste using a citrus fruit peel biochar catalyst. J Cleaner Prod 365:132712. https://doi.org/10.1016/j.jclepro.2022.132712

    Article  Google Scholar 

  60. Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK (2016) Production and utilization of biochar: a review. J Indus Eng Chem 40:1–15. https://doi.org/10.1016/j.jiec.2016.06.002

    Article  Google Scholar 

  61. Srinivasan P, Sarmah AK (2015) Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Sci Total Environ 502:471–480. https://doi.org/10.1016/j.scitotenv.2014.09.048

    Article  Google Scholar 

  62. Zhu S, Liang B, Mou X, Liang X, Huang H, Huang D, Zhou W, Xu S, Guo J (2022) In-situ synthesis of F-doped FeOOH nanorods on graphene as anode materials for high lithium storage. J Alloys Comp 905:164142. https://doi.org/10.1016/j.jallcom.2022.164142

    Article  Google Scholar 

  63. Zhao L, Zhang H, Zhao B, Lyu H (2022) Activation of peroxydisulfate by ball-milled α-FeOOH/biochar composite for phenol removal: component contribution and internal mechanisms. Environ Poll 293:118596. https://doi.org/10.1016/j.envpol.2021.118596

    Article  Google Scholar 

  64. Xue L, Gao B, Wan Y, Fang J, Wang S, Li Y, Muñoz-Carpena R, Yang L (2016) High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions. J Taiwan Inst Chem Eng 63:312–317. https://doi.org/10.1016/j.jtice.2016.03.021

    Article  Google Scholar 

  65. Husein DZ (2019) A green approach for iron removal and subsequent phosphate removal in Al Kharga (Egypt) using date palm biochar and its re-usability: Case study. Desal Water Treat 165:253–268. https://doi.org/10.5004/dwt.2019.24516

    Article  Google Scholar 

  66. Rani M, Yadav J, Shanker U (2021) Green synthesis of sunlight responsive zinc oxide coupled cadmium sulfide nanostructures for efficient photodegradation of pesticides. J Colloid Interf Sci 601:689–703. https://doi.org/10.1016/j.jcis.2021.05.152

    Article  Google Scholar 

  67. Shakya A, Núñez-Delgado A, Agarwal T (2019) Biochar synthesis from sweet lime peel for hexavalent chromium remediation from aqueous solution. J Environ Manage 251:109570. https://doi.org/10.1016/j.jenvman.2019.109570

  68. Threepanich A, Praipipat P (2021) Powdered and beaded lemon peels-doped iron (III) oxide-hydroxide materials for lead removal applications: Synthesis, characterizations, and lead adsorption studies. J Environ Chem Eng 9(5):106007. https://doi.org/10.1016/j.jece.2021.106007

    Article  Google Scholar 

  69. Guo Y, Yan L, Li X, Yan T, Song W, Hou T, Tong C, Mu J, Xu M (2021) Goethite/biochar-activated peroxymonosulfate enhances tetracycline degradation: inherent roles of radical and non-radical processes. Sci Total Environ 783:147102. https://doi.org/10.1016/j.scitotenv.2021.147102

    Article  Google Scholar 

  70. Greczynski G, Hultman L (2017) C 1s peak of adventitious carbon aligns to the vacuum level: dire consequences for material’s bonding assignment by photoelectron spectroscopy. Chem Phys Chem 18(12):1507–1512. https://doi.org/10.1002/cphc.201700126

    Article  Google Scholar 

  71. Bagus PS, Nelin CJ, Brundle CR, Lahiri N, Ilton ES, Rosso KM (2020) Analysis of the Fe 2p XPS for hematite α Fe2O3: Consequences of covalent bonding and orbital splittings on multiplet splittings. J Chem Physics 152(1):014704. https://doi.org/10.1063/1.5135595

    Article  Google Scholar 

  72. Mansour AN, Brizzolara RA (1996) Characterization of the surface of α-FeOOH powder by XPS. Surf Sci Spectra 4(4):357–362. https://doi.org/10.1116/1.1247825

    Article  Google Scholar 

  73. Bhagya TC, Rajan A, Shibli SMA (2021) In situ tuning of band gap of Sn doped composite for sustained photocatalytic hydrogen generation under visible light irradiation. Intern J Hydrogen Energ 46(30):16360–16372. https://doi.org/10.1016/j.ijhydene.2020.08.110

    Article  Google Scholar 

  74. Keshu RM, Shanker U (2022) Efficient removal of plastic additives by sunlight active titanium dioxide decorated Cd–Mg ferrite nanocomposite: Green synthesis, kinetics and photoactivity. Chemos 290:133307. https://doi.org/10.1016/j.chemosphere.2021.133307

    Article  Google Scholar 

  75. Begum NS, Farveez Ahmed HM, Gunashekar KR (2008) Effects of Ni doping on photocatalytic activity of TiO2 thin films prepared by liquid phase deposition technique. Bull Mater Sci 31(5):747–751. https://doi.org/10.1007/s12034-008-0118-x

    Article  Google Scholar 

  76. Rani M, Shanker U (2021) Efficient degradation of organic pollutants by novel titanium dioxide coupled bismuth oxide nanocomposite: Green synthesis, kinetics and photoactivity. J Environ Manag 300:113777. https://doi.org/10.1016/j.jenvman.2021.113777

    Article  Google Scholar 

  77. Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A: Chem 162(2–3):317–322. https://doi.org/10.1016/S1010-6030(03)00378-2

    Article  Google Scholar 

  78. Rani M, Keshu, Shanker U (2023) Efficient visible light photocatalytic organic colorants elimination performance induced by biosynthesized titanium dioxide coupled cadmium sulfide nanostructures. Intern J Environ Sci Technol 20:5491–5508 https://doi.org/10.1007/s13762-022-04255-z

  79. Rani M, Shanker U (2021) Sunlight-induced photocatalytic degradation of organic pollutants by biosynthesized hetrometallic oxides nanoparticles. Environl Sci Poll Res 28(43):61760–61780. https://doi.org/10.1007/s11356-021-15003-0

    Article  Google Scholar 

  80. Ochuma IJ, Fishwick RP, Wood J, Winterbottom JM (2007) Optimisation of degradation conditions of 1, 8-diazabicyclo [5.4. 0] undec-7-ene in water and reaction kinetics analysis using a cocurrent downflow contactor photocatalytic reactor. Appl Catal B: Environ 73(34):259–268. https://doi.org/10.1016/j.apcatb.2006.12.008

    Article  Google Scholar 

  81. Rani M, Keshu Usha, Shanker Uma (2023) Chicken egg shell waste derived calcium oxide based nanohybrid for rapid removal of heavy metal ions from water: green synthesis, kinetics and reusability. Chem. Select 8(16):e202203540. https://doi.org/10.1002/slct.202203540

    Article  Google Scholar 

  82. Pouretedal HR, Saedi E (2014) Dechlorination of 2, 4-dichlorophenol by zero-valent iron nanoparticles impregnated MCM-48. Int J Industrial Chem 5(3):77–83. https://doi.org/10.1007/s40090-014-0021-9

    Article  Google Scholar 

  83. Cheng S, Zhao S, Xing B, Liu Y, Zhang C, Xia H (2022) Preparation of magnetic adsorbent-photocatalyst composites for dye removal by synergistic effect of adsorption and photocatalysis. J Clean Prod 348:131301. https://doi.org/10.1016/j.jclepro.2022.131301

    Article  Google Scholar 

  84. Nalaya P, Wahid SA, Izuan HEM (2020) Characterization of empty fruit bunch biochar pyrolyzed at different temperatures with respect to activated carbon and their sorption capacities for pentachlorophenol. J Water Environ Techn 18(5):314–326. https://doi.org/10.2965/jwet.20-013

    Article  Google Scholar 

  85. Wang WK, Chen JJ, Gao M, Huang YX, Zhang X, Yu HQ (2016) Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio. Appl Catalysis B: Environ 195:69–76. https://doi.org/10.1016/j.apcatb.2016.05.009

    Article  Google Scholar 

  86. Tan XF, Liu YG, Gu YL, Xu Y, Zeng GM, Hu XJ., Liu SB, Wang X, Liu SM, Li J (2016) Biochar-based nanocomposites for the decontamination of wastewater: a review. Biores Techn 212: 318–333. https://doi.org/10.1016/j.biortech.2016.04.093

  87. Daghrir R, Drogui P, Delegan N, El Khakani M (2013) Electrochemical degradation of chlortetracycline using N-doped Ti/TiO2 photoanode under sunlight irradiations. Water Res 47(17):6801–6810. https://doi.org/10.1016/j.watres.2013.09.011

    Article  Google Scholar 

  88. Kong L, Ferry JL (2003) Effect of salinity on the photolysis of chrysene adsorbed to a smectite clay. Environ Sci Technol 37(21):4894–4900. https://doi.org/10.1021/es026124o

    Article  Google Scholar 

  89. Badvi K, Javanbakht V (2021) Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. J Cleaner Prod 280:124518. https://doi.org/10.1016/j.jclepro.2020.124518

    Article  Google Scholar 

  90. Kanan S, Moyet MA, Arthur RB, Patterson HH (2020) Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catalysis Rev 62(1):1–65. https://doi.org/10.1080/01614940.2019.1613TT323

    Article  Google Scholar 

  91. Saljooqi A, Shamspur T, Mostafavi A (2021) Synthesis and photocatalytic activity of porous ZnO stabilized by TiO2 and Fe3O4 nanoparticles: investigation of pesticide degradation reaction in water treatment. Environ Sci Pollution Res 28(8):9146–9156. https://doi.org/10.1007/s11356-020-11122-2

    Article  Google Scholar 

  92. Farahbakhsh S, Parvari R, Zare A, Mahdizadeh H, Faizi V, Saljooqi A (2022) Preparation of biochar based on grapefruit peel and magnetite decorated with cadmium sulfide nanoparticles for photocatalytic degradation of chlorpyrifos. Diamond Related Mater 24:109130. https://doi.org/10.1016/j.diamond.2022.109130

    Article  Google Scholar 

  93. Al-Sheikhly M, Silverman J, Neta P, Karam L (1997) Mechanisms of ionizing radiation-induced destruction of 2, 6-dichlorobiphenyl in aqueous solutions. Environ Sci Technol 31(9):2473–2477. https://doi.org/10.1021/es960741t

    Article  Google Scholar 

  94. Shah NS, Khan JA, Nawaz S, Khan HM (2014) Role of aqueous electron and hydroxyl radical in the removal of endosulfan from aqueous solution using gamma irradiation. J Hazard Mater 278:40–48. https://doi.org/10.1016/j.jhazmat.2014.05.073

    Article  Google Scholar 

  95. Mathanakeerthi S, Sadheesh S, Gowtham S, Kumar VM (2021) Adsorption of endosulfan from aqueous solution using graphene clay matrix (GCM). Mater Today: Proceed 45:5665–5671. https://doi.org/10.1016/j.matpr.2021.02.466

    Article  Google Scholar 

Download references

Funding

MR is grateful to DST-SERB, New Delhi (Sanction order no. SRG/2019/000114) and TEQIP-III, MNIT Jaipur, India, for the financial assistance. Keshu is thankful to Ministry of Education New Delhi for research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Manviri Rani: visualization, investigation, supervision. Keshu: data curation, software, validation writing—original article. Ankit: data curation experimental. Uma Shanker: supervision, writing—review and editing.

Corresponding authors

Correspondence to Manviri Rani or Uma Shanker.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1057 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, M., Ankit, Keshu et al. Efficient degradation of endocrine disruptor pesticides by biochar iron oxide-based nanocomposite: green synthesis, kinetics, and photoactivity. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04374-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04374-8

Keywords

Navigation