Skip to main content
Log in

Organosolv pretreatment of corncob for enzymatic hydrolysis of Xylan

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract    

Xylan is a renewable polysaccharide, readily available in agricultural and forestry residues. It can be hydrolyzed to produce xylooligosaccharides (XOS) with prebiotic activity and xylose, a precursor for several industrial chemicals. Enzymatic hydrolysis of xylan in the lignocellulosic biomass to obtain xylose and XOS requires a pretreatment to facilitate xylanase activity. In this study, organosolv was evaluated for the delignification of corncob while retaining xylan in the pretreated biomass. The treatment at 170 °C for 1 h with 70% ethanol provided 50% lignin removal and 81% xylan recovery. Increasing temperatures and decreasing ethanol fractions decreased the pH and the xylan recovery. Loss of xylan in the organosolv at 190 °C and in the liquid hot water treatment could be prevented by the addition of 100 mM MgO, without compromising lignin removal. Pretreated corncob was suspended in citrate buffer and hydrolyzed by commercial xylanases. Accellerase XY (250 U/ml) at pH 5.5 and 55 °C and Econase XT (0.6 U/ml) at pH 6.0 and 70 °C provided around 65% xylan digestibility and generated xylose (9.8 g/l) and XOS (10.9 g/l), respectively. This approach could decrease xylan loss and degradation in the pretreatment step and yield clear hydrolysates composed of essentially xylose or XOS. Lignocellulosic biorefineries can benefit from the efficient utilization of xylan, increasing sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Romaní A, Rocha CMR, Michelin M, Domingues L, Teixeira JA (2020) Valorization of lignocellulosic-based wastes. In: Varjani S, Pandey A, Gnansounou E, Khanal SK, Raveendran S (eds) Current Developments in Biotechnology and Bioengineering. Elsevier, pp 383–410

    Chapter  Google Scholar 

  2. Hassan SS, Williams GA, Jaiswal AK (2019) Moving towards the second generation of lignocellulosic biorefineries in the EU: drivers, challenges, and opportunities. Renew Sustain Energy Rev 101:590–599. https://doi.org/10.1016/j.rser.2018.11.041

    Article  Google Scholar 

  3. Dutta N, Usman M, Luo G, Zhang S (2022) An insight into valorization of lignocellulosic biomass by optimization with the combination of hydrothermal (HT) and biological techniques: a review. Sustain Chem 3(1):35–55

    Article  Google Scholar 

  4. Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206. https://doi.org/10.1016/j.fuproc.2016.12.007

    Article  Google Scholar 

  5. Roy R, Rahman MS, Raynie DE (2020) Recent advances of greener pretreatment technologies of lignocellulose. Curr Res Green Sustain Chem 3:100035. https://doi.org/10.1016/j.crgsc.2020.100035

    Article  Google Scholar 

  6. Reshmy R, Paulose TAP, Philip E, Thomas D, Madhavan A, Sirohi R, Binod P, Kumar Awasthi M, Pandey A, Sindhu R (2022) Updates on high value products from cellulosic biorefinery. Fuel 308:122056. https://doi.org/10.1016/j.fuel.2021.122056

    Article  Google Scholar 

  7. Nitsos CK, Lazaridis PA, Mach-Aigner A, Matis KA, Triantafyllidis KS (2019) Enhancing lignocellulosic biomass hydrolysis by hydrothermal pretreatment, extraction of surface lignin, wet milling and production of cellulolytic enzymes. Chemsuschem 12(6):1179–1195. https://doi.org/10.1002/cssc.201802597

    Article  Google Scholar 

  8. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800. https://doi.org/10.1016/j.biortech.2010.01.088

    Article  Google Scholar 

  9. Hua Y, Wang J, Zhu Y, Zhang B, Kong X, Li W, Wang D, Hong J (2019) Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate. Microb Cell Fact 18(1):24. https://doi.org/10.1186/s12934-019-1068-2

    Article  Google Scholar 

  10. Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V (2022) Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. Sustain Energy Fuels 6(1):29–65. https://doi.org/10.1039/D1SE00927C

    Article  Google Scholar 

  11. Harner NK, Wen X, Bajwa PK, Austin GD, Ho C-Y, Habash MB, Trevors JT, Lee H (2015) Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biotechnol 42(1):1–20. https://doi.org/10.1007/s10295-014-1535-z

    Article  Google Scholar 

  12. Qiu Z, Gao Q, Bao J (2018) Engineering Pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic l-lactic acid fermentation. Bioresour Technol 249:9–15. https://doi.org/10.1016/j.biortech.2017.09.117

    Article  Google Scholar 

  13. Jiang M, Ma J, Wu M, Liu R, Liang L, Xin F, Zhang W, Jia H, Dong W (2017) Progress of succinic acid production from renewable resources: metabolic and fermentative strategies. Bioresour Technol 245:1710–1717. https://doi.org/10.1016/j.biortech.2017.05.209

    Article  Google Scholar 

  14. Mohamad NL, Mustapa Kamal SM, Mokhtar MN (2015) Xylitol biological production: a review of recent studies. Food Rev Int 31(1):74–89. https://doi.org/10.1080/87559129.2014.961077

    Article  Google Scholar 

  15. Torres-Mayanga PC, Lachos-Perez D, Mudhoo A, Kumar S, Brown AB, Tyufekchiev M, Dragone G, Mussatto SI, Rostagno MA, Timko M, Forster-Carneiro T (2019) Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: a review. Biomass Bioenergy 130:105397. https://doi.org/10.1016/j.biombioe.2019.105397

    Article  Google Scholar 

  16. Naidu DS, Hlangothi SP, John MJ (2018) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41

    Article  Google Scholar 

  17. Zeybek N, Rastall RA, Buyukkileci AO (2020) Utilization of xylan-type polysaccharides in co-culture fermentations of Bifidobacterium and Bacteroides species. Carbohydr Polym 236:116076. https://doi.org/10.1016/j.carbpol.2020.116076

    Article  Google Scholar 

  18. Peng F, Peng P, Xu F, Sun R-C (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30(4):879–903. https://doi.org/10.1016/j.biotechadv.2012.01.018

    Article  Google Scholar 

  19. Huang L-Z, Ma M-G, Ji X-X, Choi S-E, Si C (2021) Recent developments and applications of hemicellulose from wheat straw: a review. Front Bioeng Biotechnol 9:440

    Article  Google Scholar 

  20. Surek E, Buyukkileci AO (2017) Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr Polym 174:565–571. https://doi.org/10.1016/j.carbpol.2017.06.109

    Article  Google Scholar 

  21. Yao K, Wu Q, An R, Meng W, Ding M, Li B, Yuan Y (2018) Hydrothermal pretreatment for deconstruction of plant cell wall: part I. Effect on lignin-carbohydrate complex. AICHE J 64(6):1938–1953. https://doi.org/10.1002/aic.16114

    Article  Google Scholar 

  22. Ferreira JA, Taherzadeh MJ (2020) Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresour Technol 299:122695. https://doi.org/10.1016/j.biortech.2019.122695

    Article  Google Scholar 

  23. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827. https://doi.org/10.1007/s00253-009-1883-1

    Article  Google Scholar 

  24. Zhang Z, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18(2):360–381. https://doi.org/10.1039/C5GC02034D

    Article  Google Scholar 

  25. Gong Z, Wang X, Yuan W, Wang Y, Zhou W, Wang G, Liu Y (2020) Fed-batch enzymatic hydrolysis of alkaline organosolv-pretreated corn stover facilitating high concentrations and yields of fermentable sugars for microbial lipid production. Biotechnol Biofuels 13(1):13. https://doi.org/10.1186/s13068-019-1639-9

    Article  Google Scholar 

  26. Zhu Y, Kim TH, Lee Y, Chen R, Elander RT (2006) Enzymatic production of xylooligosaccharides from corn stover and corn cobs treated with aqueous ammonia. Appl Biochem Biotechnol 130(1):586–598

    Article  Google Scholar 

  27. Li J, Zhang M, Wang D (2019) Enhancing delignification and subsequent enzymatic hydrolysis of corn stover by magnesium oxide-ethanol pretreatment. Bioresour Technol 279:124–131. https://doi.org/10.1016/j.biortech.2019.01.123

    Article  Google Scholar 

  28. Li J, Li W, Zhang M, Wang D (2018) Boosting the fermentable sugar yield and concentration of corn stover by magnesium oxide pretreatment for ethanol production. Bioresour Technol 269:400–407. https://doi.org/10.1016/j.biortech.2018.08.102

    Article  Google Scholar 

  29. Borand MN, Karaosmanoğlu F (2018) Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: a review. J Renew Sustain Energy 10(3):033104. https://doi.org/10.1063/1.5025876

    Article  Google Scholar 

  30. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257–270

    Article  Google Scholar 

  31. Adney B, Baker J (2008) Measurement of cellulase activities. https://www.nrel.gov/docs/gen/fy08/42628.pdf. Accessed 10 November 2022

  32. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58(16):9043–9053. https://doi.org/10.1021/jf1008023

    Article  Google Scholar 

  33. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. https://www.nrel.gov/docs/gen/fy08/42623.pdf. Accessed 10 November 2022.

  34. Matsakas L, Raghavendran V, Yakimenko O, Persson G, Olsson E, Rova U, Olsson L, Christakopoulos P (2019) Lignin-first biomass fractionation using a hybrid organosolv – steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresour Technol 273:521–528. https://doi.org/10.1016/j.biortech.2018.11.055

    Article  Google Scholar 

  35. Nitsos C, Rova U, Christakopoulos P (2018) Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies 11(1):50

    Article  Google Scholar 

  36. Kim TH, Ryu HJ, Oh KK (2019) Improvement of organosolv fractionation performance for rice husk through a low acid-catalyzation. Energies 12(9):1800

    Article  Google Scholar 

  37. Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94(5):851–861. https://doi.org/10.1002/bit.20905

    Article  Google Scholar 

  38. Santos TM, Rigual V, Domínguez JC, Alonso MV, Oliet M, Rodriguez F (2022) Fractionation of Pinus radiata by ethanol-based organosolv process. Biomass Convers. Biorefin. https://doi.org/10.1007/s13399-022-02329-z

  39. Zhou Z, Lei F, Li P, Jiang J (2018) Lignocellulosic biomass to biofuels and biochemicals: a comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnol Bioeng 115(11):2683–2702. https://doi.org/10.1002/bit.26788

    Article  Google Scholar 

  40. Malik K, Sharma P, Yang Y, Zhang P, Zhang L, Xing X, Yue J, Song Z, Nan L, Yujun S, El-Dalatony MM, Salama E-S, Li X (2022) Lignocellulosic biomass for bioethanol: insight into the advanced pretreatment and fermentation approaches. Ind. Crop Prod. 188:115569. https://doi.org/10.1016/j.indcrop.2022.115569

    Article  Google Scholar 

  41. Li J, Zhang M, Li J, Wang D (2018) Corn stover pretreatment by metal oxides for improving lignin removal and reducing sugar degradation and water usage. Bioresour Technol 263:232–241. https://doi.org/10.1016/j.biortech.2018.05.006

    Article  Google Scholar 

  42. Ye K, Tang Y, Fu D, Chen T, Li M (2021) Effect of magnesium oxide pretreatment on the delignification and enzymatic hydrolysis of corncob. Ind Crop Prod 161:113170. https://doi.org/10.1016/j.indcrop.2020.113170

    Article  Google Scholar 

  43. Jayapal N, Samanta AK, Kolte AP, Senani S, Sridhar M, Suresh KP, Sampath KT (2013) Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production. Ind Crop Prod 42:14–24. https://doi.org/10.1016/j.indcrop.2012.05.019

    Article  Google Scholar 

  44. Samanta A, Jayapal N, Jayaram C, Roy S, Kolte A, Senani S, Sridhar M (2015) Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact Carbohydr Dietary Fibre 5(1):62–71

    Article  Google Scholar 

  45. Surek E, Buyukkileci AO, Yegin S (2021) Processing of hazelnut (Corylus avellana L.) shell autohydrolysis liquor for production of low molecular weight xylooligosaccharides by Aureobasidium pullulans NRRL Y–2311–1 xylanase. Ind Crop Prod 161:113212. https://doi.org/10.1016/j.indcrop.2020.113212

    Article  Google Scholar 

  46. Uçkun Kiran E, Akpinar O, Bakir U (2013) Improvement of enzymatic xylooligosaccharides production by the co-utilization of xylans from different origins. Food Bioprod Process 91(4):565–574. https://doi.org/10.1016/j.fbp.2012.12.002

    Article  Google Scholar 

  47. Ho AL, Kosik O, Lovegrove A, Charalampopoulos D, Rastall RA (2018) In vitro fermentability of xylo-oligosaccharide and xylo-polysaccharide fractions with different molecular weights by human faecal bacteria. Carbohydr Polym 179:50–58. https://doi.org/10.1016/j.carbpol.2017.08.077

    Article  Google Scholar 

  48. Yegin S (2022) Microbial xylanases in xylooligosaccharide production from lignocellulosic feedstocks. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03190-w

  49. Feng X, Yao Y, Xu N, Jia H, Li X, Zhao J, Chen S, Qu Y (2021) Pretreatment affects profits from xylanase during enzymatic saccharification of corn stover through changing the interaction between lignin and xylanase protein. Front Microbiol 12:754593. https://doi.org/10.3389/fmicb.2021.754593

    Article  Google Scholar 

  50. Huang C, Zhao C, Li H, Xiong L, Chen X, Luo M, Chen X (2018) Comparison of different pretreatments on the synergistic effect of cellulase and xylanase during the enzymatic hydrolysis of sugarcane bagasse. RSC Adv 8(54):30725–30731. https://doi.org/10.1039/C8RA05047C

    Article  Google Scholar 

  51. Harahap BM (2020) Degradation techniques of hemicellulose fraction from biomass feedstock for optimum Xylose production: a review. Jurnal Keteknikan Pertanian Tropis dan Biosistem 8(2):107–124. https://doi.org/10.21776/ub.jkptb.2020.008.02.01

    Article  Google Scholar 

  52. Chen Y, Xie Y, Ajuwon KM, Zhong R, Li T, Chen L, Zhang H, Beckers Y, Everaert N (2021) Xylo-oligosaccharides, preparation and application to human and animal health: a review. Front Nutr 8:731930. https://doi.org/10.3389/fnut.2021.731930

    Article  Google Scholar 

  53. Pongchaiphol S, Suriyachai N, Hararak B, Raita M, Laosiripojana N, Champreda V (2022) Physicochemical characteristics of organosolv lignins from different lignocellulosic agricultural wastes. Int J Biol Macromol 216:710–727. https://doi.org/10.1016/j.ijbiomac.2022.07.007

    Article  Google Scholar 

Download references

Funding

This work was supported by The Scientific and Technological Research Council of Türkiye (grant number 218M252).

Author information

Authors and Affiliations

Authors

Contributions

Ali Oguz Buyukkileci: conceptualization, methodology, funding acquisition, resources, supervision, and writing—reviewing and editing; Nuran Temelli: investigation, methodology, and writing—original draft preparation.

Corresponding author

Correspondence to Ali Oguz Buyukkileci.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buyukkileci, A.O., Temelli, N. Organosolv pretreatment of corncob for enzymatic hydrolysis of Xylan. Biomass Conv. Bioref. 13, 6385–6394 (2023). https://doi.org/10.1007/s13399-023-03786-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-023-03786-w

Keywords

Navigation