Skip to main content
Log in

Effect of ultrasound-assisted xylanase pretreatment on the soluble substances of poplar wood and its model construction

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Cellulose, hemicellulose, and lignin molecules in poplar wood are interwoven to form a dense network-like structure, which prevents their degradation into oligomers for the preparation of biomass-based materials and chemicals. Therefore, it is necessary to use a pretreatment process to decompose the complex matrix. In this study, ultrasound-assisted xylanase treatment was used for poplar wood pretreatment. The effects of different parameters, such as enzyme treatment time, enzyme dosage, and ultrasound time on soluble substances and the surface of the cell wall were systematically investigated. The optimal conditions for the degradation of hemicellulose and lignin in poplar wood were a treatment time of 60 min and a xylanase dosage of 25 U/g. Ultrasound-assisted xylanase treatment improved the efficiency of removing hemicellulose. The contents of glucose, xylose, and lignin were increased by 34.73%, 32.01%, and 59.65%, respectively, with the ultrasound-assisted xylanase treatment. In addition, a least-squares model was constructed to describe the dissolution behavior of component, which is helpful to guide the subsequent conversion and utilization of poplar wood biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K (2022) Cellulose nanopaper: fabrication, functionalization and applications. Nano-Micro Lett 14:104. https://doi.org/10.1007/s40820-022-00849-x

    Article  CAS  Google Scholar 

  2. Yang S, Shi C, Qu K, Sun Z, Li H, Xu B, Huang Z, Guo Z (2023) Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification. Carbon Lett 33:2063–2074. https://doi.org/10.1007/s42823-023-00540-0

    Article  Google Scholar 

  3. Ruan J, Chang Z, Rong H, Alomar T, Zhu D, AlMasoud N, Liao Y, Zhao R, Zhao X, Li Y, Xu BB, Guo Z, El-Bahy Z, Li H, Zhang X, Ge S (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208. https://doi.org/10.1016/j.carbon.2023.118208

    Article  CAS  Google Scholar 

  4. Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C (2023) Sustainable polysaccharide-based materials for intelligent packaging. Carbohyd Polym 313:120851. https://doi.org/10.1016/j.carbpol.2023.120851

    Article  CAS  Google Scholar 

  5. Wang Y, Xu T, Liu K, Zhang M, Cai X-M, Si C (2023) Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives. Aggregate. https://doi.org/10.1002/agt2.428

    Article  Google Scholar 

  6. Zhang H, Li S, Hang H, Wang R, Cheng C, Fedorovich KV, Mai X (2023) Mildew-resistant wood building materials with titanium oxide nanosheet. Eng Sci 21:816. https://doi.org/10.30919/es8e816

    Article  CAS  Google Scholar 

  7. Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H, Dai L, Zhang X, Si C, Du H, Zhang K (2022) Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater 48:244–262. https://doi.org/10.1016/j.ensm.2022.03.0137

    Article  Google Scholar 

  8. Zhang H, Wang R, Wang L, Li S, Yuan Y, Wang N, Chen S, Mai X (2023) Super-hydrophobic wood composite with plexiglass coating. Eng Sci 23:865. https://doi.org/10.30919/es8d865

    Article  CAS  Google Scholar 

  9. Yang Y, Zhang L, Zhang J, Ren Y, Huo H, Zhang X, Huang K, Rezakazemi M, Zhang Z (2023) Fabrication of environmentally, high-strength, fire-retardant biocomposites from small-diameter wood lignin in situ reinforced cellulose matrix. Adv Compos Hybrid Mater 6(4):140. https://doi.org/10.1007/s42114-023-00721-5

    Article  CAS  Google Scholar 

  10. Rao MVSSTS, Muralikrishna G (2006) Hemicelluloses of ragi (finger millet, Eleusine coracana, Indaf-15): isolation and purification of an alkali-extractable arabinoxylan from native and malted hemicellulose B. J Agric Food Chem 54:2342–2349. https://doi.org/10.1021/jf058144q

    Article  CAS  Google Scholar 

  11. Liu K, Du H, Zheng T, Liu W, Zhang M, Liu H, Zhang X, Si C (2021) Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem 23:9723–9746. https://doi.org/10.1039/D1GC02841C

    Article  CAS  Google Scholar 

  12. Xu T, Wang Y, Liu K, Zhao Q, Liang Q, Zhang M, Si C (2023) Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv Compos Hybrid Mater 6:108. https://doi.org/10.1007/s42114-023-00675-8

    Article  CAS  Google Scholar 

  13. Liang Q, Liu K, Xu T, Wang Y, Zhang M, Zhao Q, Zhong W, Cai X-M, Zhao Z, Si C (2023) Interfacial modulation of Ti3C2Tx MXene by cellulose nanofibrils to construct hybrid fibers with high volumetric specific capacitance. Small. https://doi.org/10.1002/smll.202307344

    Article  PubMed  Google Scholar 

  14. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):1–19. https://doi.org/10.1186/s40643-017-0137-9

    Article  CAS  Google Scholar 

  15. Hassan SS, Williams GA, Jaiswal AK (2018) Emerging technologies for the pretreatment of lignocellulosic biomass. Biores Technol 262:310–318. https://doi.org/10.1016/j.biortech.2018.04.099

    Article  CAS  Google Scholar 

  16. Yang Y, Kang X, Yang Y, Ye H, Jiang J, Zheng G et al (2023) Research progress in green preparation of advanced wood-based composites. Adv Compos Hybrid Mater 6(6):202. https://doi.org/10.1007/s42114-023-00770-w

    Article  Google Scholar 

  17. Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. BioEnergy Research 5:1043–1066. https://doi.org/10.1007/s12155-012-9208-0

    Article  CAS  Google Scholar 

  18. Foster BL, Dale BE, Doran-Peterson JB (2001) Enzymatic hydrolysis of ammonia-treated sugar beet pulp. Appl Biochem Biotechnol 91–93:269–282. https://doi.org/10.1385/abab:91-93:1-9:269

    Article  PubMed  Google Scholar 

  19. Saha BC, Qureshi N, Kennedy GJ, Cotta MA (2016) Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeterior Biodegrad 109:29–35. https://doi.org/10.1016/j.ibiod.2015.12.020

    Article  CAS  Google Scholar 

  20. Zheng Y, Liu H, Yan L, Yang H, Dai L, Si C (2023) Lignin-based encapsulation of liquid metal particles for flexible and high-efficiently recyclable electronics. Adv Funct Mater. https://doi.org/10.1002/adfm.202310653

    Article  PubMed  Google Scholar 

  21. Wang B, Zhang H-R, Huang C, Xiong L, Luo J, Chen X (2024) Study on non-isothermal crystallization behavior of isotactic polypropylene/bacterial cellulose composites. RSC Adv 7:42113–42122. https://doi.org/10.1039/C7RA07731A

    Article  Google Scholar 

  22. Liu H, Xu T, Liu K, Zhang M, Liu W, Li H, Du H, Si C (2021) Lignin-based electrodes for energy storage application. Ind Crops Prod 165:113425. https://doi.org/10.1016/j.indcrop.2021.113425

    Article  CAS  Google Scholar 

  23. Kang F, Jiang X, Wang Y, Ren J, Xu BB, Gao G, Huang Z, Guo Z (2023) Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline. Inorg Chem Front 10:6045–6057. https://doi.org/10.1039/D3QI01283B

    Article  CAS  Google Scholar 

  24. Si C-L, Kim J-K, Bae Y-S, Li S-M (2009) Phenolic compounds in the leaves of Populus ussuriensis and their antioxidant activities. Planta Med 75:1165–1167. https://doi.org/10.1055/s-0029-1185476

    Article  CAS  PubMed  Google Scholar 

  25. Duan Y, Yang H, Liu K, Xu T, Chen J, Xie H, Du H, Dai L, Si C (2023) Cellulose nanofibril aerogels reinforcing polymethyl methacrylate with high optical transparency. Adv Compos Hybrid Mater 6:123. https://doi.org/10.1007/s42114-023-00700-w

    Article  CAS  Google Scholar 

  26. Liu W, Lin Q, Chen S, Yang H, Lui K, Pang B, Xu T, Si C (2023) Microencapsulated phase change material through cellulose nanofibrils stabilized Pickering emulsion templating. Adv Compos Hybrid Mater 6:149. https://doi.org/10.1007/s42114-023-00725-1

    Article  CAS  Google Scholar 

  27. Singh G, Capalash N, Kaur K, Puri S, Sharma P (2016) Enzymes: applications in pulp and paper industry. In Agro-industrial wastes as feedstock for enzyme production, (Elsevier). https://doi.org/10.1016/B978-0-12-802392-1.00007-1

    Article  Google Scholar 

  28. Torres CE, Negro C, Fuente E, Blanco A (2012) Enzymatic approaches in paper industry for pulp refining and biofilm control. Appl Microbiol Biotechnol 96:327–344. https://doi.org/10.1007/s00253-012-4345-0

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Ji X-X, Liu S, Tian Z, Si C, Wang R, Yang G, Wang D (2022) Effects of two different enzyme treatments on the microstructure of outer surface of wheat straw. Adv Compos Hybrid Mater 5:934–947. https://doi.org/10.1007/s42114-021-00395-x

    Article  CAS  Google Scholar 

  30. Liu W, Du H, Zhang M, Liu K, Liu H, Xie H, Zhang X, Si C (2020) Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustain Chem Eng 8:7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125

    Article  CAS  Google Scholar 

  31. Cui J, Sun H, Chen R, Sun J, Mo G, Luan G, Lu X (2023) Multiple routes toward engineering efficient cyanobacterial photosynthetic biomanufacturing technologies. Green Carbon 1:210–226. https://doi.org/10.1016/j.greenca.2023.11.004

    Article  Google Scholar 

  32. Hou H, Huang X, Du Z, Guo J, Wang M, Xu G, Geng C, Zhang Y, Wang Q, Lu X (2023) Integration of biological synthesis & chemical catalysis: bio-based Plasticizer trans-Aconitates. Green Carbon 1:20–32. https://doi.org/10.1016/j.greenca.2023.08.001

    Article  Google Scholar 

  33. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33:2101368. https://doi.org/10.1002/adma.202101368

    Article  CAS  Google Scholar 

  34. Liu H, Du H, Zheng T, Liu K, Ji X, Xu T, Zhang X, Si C (2021) Cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J 426:130817. https://doi.org/10.1016/j.cej.2021.130817

    Article  CAS  Google Scholar 

  35. Shirsath SR, Sonawane SH, Gogate PR (2012) Intensification of extraction of natural products using ultrasonic irradiations-a review of current status. Chem Eng Process 53:10–23. https://doi.org/10.1016/j.cep.2012.01.003

    Article  CAS  Google Scholar 

  36. Cheng X, Zhang M, Xu B, Adhikari B, Sun J (2015) The principles of ultrasound and its application in freezing related processes of food materials: a review. Ultrason Sonochem 27:576–585. https://doi.org/10.1016/j.ultsonch.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  37. Liu K, Du H, Liu W, Zhang M, Wang Y, Liu H, Zhang X, Xu T, Si C (2022) Strong, flexible, and highly conductive cellulose nanofibril/PEDOT:PSS/MXene nanocomposite films for efficient electromagnetic interference shielding. Nanoscale 14:14902–14912. https://doi.org/10.1039/D2NR00468B

    Article  CAS  PubMed  Google Scholar 

  38. Chen J, Jiang Q, Yang G, Wang Q, Fatehi P (2017) Ultrasonic-assisted ionic liquid treatment of chemithermomechanical pulp fibers. Cellulose 24:1483–1491. https://doi.org/10.1007/s10570-016-1180-y

    Article  CAS  Google Scholar 

  39. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker DJ (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure 1617(1):1–16

    Google Scholar 

  40. Sui Y, Cui Y, Wang Y, Zeb S, Sun G (2021) A green and efficient way to improve sugar recovery of wheat straw by ultrasonic-assisted xylanase pretreatment. Biomass Convers Biorefin 13:7067–7078. https://doi.org/10.1007/s13399-021-01623-6

    Article  CAS  Google Scholar 

  41. Li W, Sun H, Wang G, Sui W, Dai L, Si C (2023) Lignin as a green and multifunctional alternative to phenol for resin synthesis. Green Chem 25:2241–2261. https://doi.org/10.1039/D2GC04319J

    Article  CAS  Google Scholar 

  42. Liu K, Liu W, Li W, Duan Y, Zhou K, Zhang S, Ni S, Xu T, Du H, Si C (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv Compos Hybrid Mater 5:1078–1089. https://doi.org/10.1007/s42114-022-00425-2

    Article  CAS  Google Scholar 

  43. Liu W, Zhang S, Liu K, Yang H, Lin Q, Xu T, Song X, Du H, Bai L, Yao S, Si C (2023) Sustainable preparation of lignocellulosic nanofibrils and cellulose nanopaper from poplar sawdust. J Clean Prod 384:135582. https://doi.org/10.1016/j.jclepro.2022.135582

    Article  CAS  Google Scholar 

  44. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576. https://doi.org/10.1007/s10570-005-9001-8

    Article  CAS  Google Scholar 

  45. Guo X, Cheng G (2022) Moderate-dimensional inferences on quadratic functionals in ordinary least squares. J Am Stat Assoc 117(540):1931–1950. https://doi.org/10.1080/01621459.2021.1893177

    Article  CAS  Google Scholar 

  46. Li W, Wang G, Sui W, Xu T, Li Z, Parvez AM, Si C (2022) Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon 196:819–827. https://doi.org/10.1016/j.carbon.2022.05.053

    Article  CAS  Google Scholar 

  47. Liao H, Ying W, Li X, Zhu J, Xu Y, Zhang J (2022) Optimized production of xylooligosaccharides from poplar: a biorefinery strategy with sequential acetic acid/sodium acetate hydrolysis followed by xylanase hydrolysis. Biores Technol 347:126683. https://doi.org/10.1016/j.biortech.2022.126683

    Article  CAS  Google Scholar 

  48. Zheng L, Yu P, Zhang Y, Wang P, Yan W, Guo B, Huang C, Jiang Q (2021) Evaluating the bio-application of biomacromolecule of lignin-carbohydrate complexes (LCC) from wheat straw in bone metabolism via ROS scavenging. Int J Biol Macromol 176:13–25. https://doi.org/10.1016/j.ijbiomac.2021.01.103

    Article  CAS  PubMed  Google Scholar 

  49. Xu T, Song Q, Liu K, Liu H, Pan J, Liu W, Dai L, Zhang M, Wang Y, Si C, Du H, Zhang K (2023) Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett 15:98. https://doi.org/10.1007/s40820-023-01073-x

    Article  CAS  Google Scholar 

  50. Zhao B, Xu J, Chen B, Cao X, Yuan T, Wang S, Charlton A, Sun R (2018) Selective precipitation and characterization of lignin–carbohydrate complexes (LCCs) from Eucalyptus. Planta 247:1077–1087. https://doi.org/10.1007/s00425-018-2842-9

    Article  CAS  PubMed  Google Scholar 

  51. Yuan S, Ji X, Ji H, Tian Z, Chen J (2019) An optimum combined severity factor improves both the enzymatic saccharification yield and the functional lignin structure. Cellulose 26:4731–4742. https://doi.org/10.1007/s10570-019-02442-9

    Article  CAS  Google Scholar 

  52. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101:913–925. https://doi.org/10.1002/bit.21959

    Article  CAS  PubMed  Google Scholar 

  53. Li J, Lu Y, Yang D, Sun Q, Liu Y, Zhao H (2011) Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromol 12(5):1860–1867. https://doi.org/10.1021/bm200205z

    Article  CAS  Google Scholar 

  54. Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5:1168–1179. https://doi.org/10.1007/s42114-022-00427-0

    Article  CAS  Google Scholar 

  55. Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M, Du H, Si C, Zhang K (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Func Mater 32:2113082. https://doi.org/10.1002/adfm.202113082

    Article  CAS  Google Scholar 

  56. Liu W, Liu K, Wang Y, Lin Q, Liu J, Du H, Pang B, Si C (2022) Sustainable production of cellulose nanofibrils from Kraft pulp for the stabilization of oil-in-water Pickering emulsions. Ind Crops Prod 185:115123. https://doi.org/10.1016/j.indcrop.2022.115123

    Article  CAS  Google Scholar 

  57. Zhang M, Duan Y, Chen T, Qi J, Xu T, Du H, Si C (2023) Lignocellulosic materials for energy storage devices. Ind Crops Prod 203:117174. https://doi.org/10.1016/j.indcrop.2023.117174

    Article  CAS  Google Scholar 

  58. Liu W, Pang B, Zhang M, Lv J, Xu T, Bai L, Cai X-M, Yao S, Huan S, Si C (2024) Pickering multiphase materials using plant-based cellulosic micro/nanoparticles. Aggregate. https://doi.org/10.1002/agt2.486

    Article  Google Scholar 

  59. Wang Y, Xu T, Liu K, Zhang M, Zhao Q, Liang Q, Si C (2023) Nanocellulose-based advanced materials for flexible supercapacitor electrodes. Ind Crops Prod 204:117378. https://doi.org/10.1016/j.indcrop.2023.117378

    Article  CAS  Google Scholar 

  60. Zhang M, Wang Y, Liu K, Liu Y, Xu T, Du H, Si C (2023) Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Carbohyd Polym 305:120567. https://doi.org/10.1016/j.carbpol.2023.120567

    Article  CAS  Google Scholar 

  61. Liu K, Du H, Liu W, Liu H, Zhang M, Xu T, Si C (2022) Cellulose nanomaterials for oil exploration applications. Polym Rev 62:585–625. https://doi.org/10.1080/15583724.2021.2007121

    Article  CAS  Google Scholar 

  62. Liu W, Du H, Liu H, Xie H, Xu T, Zhao X, Liu Y, Zhang X, Si C (2020) Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustain Chem Eng 8:16691–16700. https://doi.org/10.1021/acssuschemeng.0c06561

    Article  CAS  Google Scholar 

  63. Zhao Q, Xu T, Zhang M, Liu H, Du H, Si C (2023) Zn@cellulose nanofibrils composite three-dimensional carbon framework for long-life Zn anode. Ind Crops Prod 194:116343. https://doi.org/10.1016/j.indcrop.2023.116343

    Article  CAS  Google Scholar 

  64. Ding F (2023) Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data. J Comput Appl Math 426:115107. https://doi.org/10.1016/j.cam.2023.115107

    Article  Google Scholar 

  65. Barratt ST, Boyd SPJEO (2021) Least squares auto-tuning. Eng Optim 53(5):789–810. https://doi.org/10.1080/0305215X.2020.1754406

    Article  Google Scholar 

  66. Chen K, Lin Y, Wang Z, Ying Z (2016) Least product relative error estimation. J Multivar Anal 144:91–98. https://doi.org/10.1016/j.jmva.2015.10.017

    Article  Google Scholar 

  67. De Hoop L, Viaene KP, Schipper AM, Huijbregts MA, De Laender F, Hendriks AJ (2017) Time-varying effects of aromatic oil constituents on the survival of aquatic species: deviations between model estimates and observations. Environ Toxicol Chem 36(1):128–136. https://doi.org/10.1002/etc.3508

    Article  CAS  PubMed  Google Scholar 

  68. Griffiths WE, Hill RC (2022) On The Power Of The F-test for hypotheses in a linear model. Am Stat 76(1):78–84. https://doi.org/10.1080/00031305.2021.1979652

    Article  Google Scholar 

  69. Ma C, Yang L, Li W, Yue J, Li J, Zu Y (2014) Ultrasound-assisted extraction of arabinogalactan and dihydroquercetin simultaneously from Larix gmelinii as a pretreatment for pulping and papermaking. PLoS ONE 9(12):e114105. https://doi.org/10.1371/journal.pone.0114105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 32230070), Natural Science Foundation of Shandong Province of China (No. ZR2021ZD38), Jinan Innovation Team (No. 2021GXRC023, 202228044), the QUTJBZ Program (No. 2022JBZ01-05), and the Taishan Scholars Program and Taishan Industrial Experts Program.

Author information

Authors and Affiliations

Authors

Contributions

Jiaxin Qu designed the research and wrote the manuscript. Zhongjian Tian sorted the data and figures. Fangfang Zhang discussed the results. Chuanling Si discussed the experiments and results. Xingxiang Ji supervised the manuscript. All authors have given approval for the final version of the manuscript.

Corresponding author

Correspondence to Xingxiang Ji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, J., Tian, Z., Zhang, F. et al. Effect of ultrasound-assisted xylanase pretreatment on the soluble substances of poplar wood and its model construction. Adv Compos Hybrid Mater 7, 77 (2024). https://doi.org/10.1007/s42114-024-00871-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00871-0

Keywords

Navigation