Skip to main content
Log in

Coal-vitamin medium for improved scheme of isolating biosurfactant-producing actinomycetes of rare species from soil samples

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A simplified scheme for the isolation of biosurfactant-producing actinomycetes from soils was developed using different combinations of pretreatments and selective media supplemented with antifungal agent, cycloheximide (0.1 g/l). Pretreatments using hot air-drying techniques as well as soil suspension in phosphate buffer solution (5 mM, pH 7.0) treated with peptone (6%) at 45 °C for 10 min proved to be effectual in decreasing the number of vegetative bacterial cells while preserving many actinomycetes spores. Out of 945 actinomycetes isolates collected from various types of soils, 126 isolates of distinct morphologies were screened for biosurfactant production and 28 isolates were proven positive with 18 from contaminated areas while 10 of the positive isolates were from relatively non-contaminated soils. The combination of coal-vitamin medium, supplemented with antifungal agent, cycloheximide (0.1 g/L), on soil samples treated with peptone (6%) and SDS (0.05%) in 5 mM phosphate buffer, pH 7.0, produced the highest number of actinomycetes isolates recovery. Initial screenings for biosurfactant production using combination of microplate assay, drop collapse method, emulsification activity, and tributyrin agar test were found adequate for copious isolates as these methods also assessed for both low- and high-molecular mass biosurfactant types and worked well for high throughput screening analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data and materials are available upon request.

References

  1. Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1(1):5. https://doi.org/10.1186/2191-0855-1-5

    Article  Google Scholar 

  2. Costa JAV, Treichel H, Santos LO, Martins VG (2018) Chapter 16 - Solid-state fermentation for the production of biosurfactants and their applications. In: Pandey A, Larroche C, Soccol CR (eds) Current Developments in Biotechnology and Bioengineering. Elsevier, pp 357–372. https://doi.org/10.1016/B978-0-444-63990-5.00016-5

  3. Cameotra S, Makkar R (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7(3):262–266. https://doi.org/10.1016/j.mib.2004.04.006

    Article  Google Scholar 

  4. Priya T, Usharani G (2009) Comparative study for biosurfactant production by using Bacillus subtilis and Pseudomonas aeruginosa. Bot Res Int 2(4):284–287

    Google Scholar 

  5. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58(1):1–26. https://doi.org/10.1038/ja.2005.1

    Article  Google Scholar 

  6. Olano C, Méndez C, Salas J (2009) Antitumor compounds from marine actinomycetes. Mar Drugs 7(2):210–248. https://doi.org/10.3390/md7020210

    Article  Google Scholar 

  7. Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10(3):181–189. https://doi.org/10.1007/s00792-005-0482-z

    Article  Google Scholar 

  8. Pizzul L, del Pilar Castillo M, Stenström J (2006) Characterization of selected actinomycetes degrading polyaromatic hydrocarbons in liquid culture and spiked soil. World J Microbiol Biotechnol 22(7):745–752. https://doi.org/10.1007/s11274-005-9100-6

    Article  Google Scholar 

  9. Dean-Ross D, Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett 204(1):205–211. https://doi.org/10.1111/j.1574-6968.2001.tb10886.x

    Article  Google Scholar 

  10. Larkin MJ, Kulakov LA, Allen CC (2005) Biodegradation and Rhodococcus – masters of catabolic versatility. Curr Opin Biotechnol 16(3):282–290. https://doi.org/10.1016/j.copbio.2005.04.007

    Article  Google Scholar 

  11. Suzuki T, Tanaka H, Itoh S (1974) Sucrose lipids of Arthrobacteria, Corynebacteria and Nocardia grown on sucrose. Agric Biol Chem 38(3):557–563. https://doi.org/10.1080/00021369.1974.10861203

    Article  Google Scholar 

  12. Maniyar JP, Doshi DV, Bhuyan SS, Mujumdar SS (2011) Bioemulsifier production by Streptomyces sp. S22 isolated from garden soil. Indian J Exp Biol 49(4):293–297

    Google Scholar 

  13. Zambry NS, Ayoib A, Md Noh NA, Yahya ARM (2017) Production and partial characterization of biosurfactant produced by Streptomyces sp R1. Bioprocess Biosyst Eng 40(7):1007–1016. https://doi.org/10.1007/s00449-017-1764-4

    Article  Google Scholar 

  14. Macdonald CR, Cooper DG, Zajic JE (1981) Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Appl Environ Microbiol 41(1):117–123. https://doi.org/10.1128/aem.41.1.117-123.1981

    Article  Google Scholar 

  15. Singer MEV, Finnerty WR (1990) Physiology of biosurfactant synthesis by Rhodococcus species H13-A. Can J Microbiol 36(11):741–745. https://doi.org/10.1139/m90-127

    Article  Google Scholar 

  16. Pirog TP, Shevchuk TA, Voloshina IN, Karpenko EV (2004) Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Appl Biochem Microbiol 40(5):470–475. https://doi.org/10.1023/B:ABIM.0000040670.33787.5f

    Article  Google Scholar 

  17. Hayakawa M (2008) Studies on the isolation and distribution of rare Actinomycetes in soil. Actinomycetologica 22(1):12–19. https://doi.org/10.3209/saj.SAJ220103

    Article  Google Scholar 

  18. You K, Park Y (1996) A new method for the selective isolation of Actinomycetes from soil. BiotechnolTech 10:7. https://doi.org/10.1007/BF00159521

    Article  Google Scholar 

  19. Nanjwade BK, Chandrashekhara S, Shamarez AM, Goudanavar PS, Manvi FV (2010) Isolation and morphological characterization of antibiotic producing actinomycetes. Trop J Pharma Res 9(3):231–236. https://doi.org/10.4314/tjpr.v9i3.56282

    Article  Google Scholar 

  20. Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4(11):654–666. https://doi.org/10.1046/j.1462-2920.2002.00352.x

    Article  Google Scholar 

  21. Pridham TG, Gottlieb D (1948) The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol 56(1):107–114. https://doi.org/10.1128/jb.56.1.107-114.1948

    Article  Google Scholar 

  22. Küster E, Williams ST (1964) Selection of media for isolation of Streptomycetes. Nature 202(4935):928–929. https://doi.org/10.1038/202928a0

    Article  Google Scholar 

  23. Olson EH (1968) Actinomycetes isolation agar. In: Difco: supplementary literature. Difco Lab., Detroit, Michigan

  24. Gandhimathi R, Seghal Kiran G, Hema TA, Selvin J, Rajeetha Raviji T, Shanmughapriya S (2009) Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10. Bioprocess Biosyst Eng 32(6):825–835. https://doi.org/10.1007/s00449-009-0309-x

    Article  Google Scholar 

  25. Kiran GS, Sabu A, Selvin J (2010) Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol 148(4):221–225. https://doi.org/10.1016/j.jbiotec.2010.06.012

    Article  Google Scholar 

  26. Ayoib A, Hashim U, Gopinath SCB (2020) Automated, high-throughput DNA extraction protocol for disposable label free, microfluidics integrating DNA biosensor for oil palm pathogen Ganoderma boninense. Process Biochem 92:447–456. https://doi.org/10.1016/j.procbio.2020.02.003

    Article  Google Scholar 

  27. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore

  28. Petrova D, Vlahov S (2007) Taxonomic characterization of the thermophilic actinomycete strain 21e–producer of thermostable collagenase. J Cult Collect 5(1):3–9

    Google Scholar 

  29. Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13(4):271–279. https://doi.org/10.1016/0167-7012(91)90064-W

    Article  Google Scholar 

  30. Cottingham MG, Bain CD, Vaux DJT (2004) Rapid method for measurement of surface tension in multiwell plates. Lab Invest 84(4):523–529. https://doi.org/10.1038/labinvest.3700054

    Article  Google Scholar 

  31. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53(2):224–229. https://doi.org/10.1128/aem.53.2.224-229.1987

    Article  Google Scholar 

  32. Doumbou CL, Salove MKH, Crawford DL, Beaulieu C (2005) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82(3):85–102. https://doi.org/10.7202/706219ar

    Article  Google Scholar 

  33. Miller HJ, Liljeroth E, Henken G, van Veen JA (1990) Fluctuations in the fluorescent pseudomonad and actinomycete populations of rhizosphere and rhizoplane during the growth of spring wheat. Can J Microbiol 36(4):254–258. https://doi.org/10.1139/m90-044

    Article  Google Scholar 

  34. Barakate M, Ouhdouch Y, Oufdou Kh, Beaulieu C (2002) Characterization of rhizospheric soil streptomycetes from Moroccan habitats and their antimicrobial activities. World J Microbiol Biotechnol 18(1):49–54. https://doi.org/10.1023/A:1013966407890

    Article  Google Scholar 

  35. Inbar E, Green SJ, Hadar Y, Minz D (2005) Competing factors of compost concentration and proximity to root affect the distribution of streptomycetes. Microb Ecol 50(1):73–81. https://doi.org/10.1007/s00248-004-0111-x

    Article  Google Scholar 

  36. Sastoque-Cala L, Cotes-Prado AM, Rodríguez-Vázquez R, Pedroza-Rodríguez AM, México PN, México DF (2010) Effect of nutrients and fermentation conditions on the production of biosurfactants using rhizobacteria isolated from fique plants. Universitas Scientiarum 15(3):251–264

    Article  Google Scholar 

  37. Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59(11):3899–3905. https://doi.org/10.1128/aem.59.11.3899-3905.1993

    Article  Google Scholar 

  38. Guo X, Lu S, Niu D, Hu D, Du AT (2010) Effects of different management types on soil nutrients and microbial biomass of Moso bamboo forest. In: Proceedings of the 19th world congress of soil science: soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. Symposium 3.3. 1 Integrated nutrient management.International Union of Soil Sciences (IUSS), pp 146–149

  39. Intra B, Mungsuntisuk I, Nihira T, Igarashi Y, Panbangred W (2011) Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp, the causative agent of anthracnose disease. BMC Res Notes 4(1):98. https://doi.org/10.1186/1756-0500-4-98

    Article  Google Scholar 

  40. Ali A, Widada J, Asmara W, Mustafa M (2011) Antifungal production of a strain of Actinomycetes spp isolated from the rhizosphere of cajuput plant: selection and detection of exhibiting activity against tested fungi. Indones J Biotechnol 16:1–10

    Google Scholar 

  41. Mustafa O, Cem UTAA (2004) Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr J Biotechnol 3(9):441–446. https://doi.org/10.5897/AJB2004.000-2087

    Article  Google Scholar 

  42. Ghorbani-Nasrabadi R, Greiner R, Alikhani HA, Hamedi J, Yakhchali B (2013) Distribution of actinomycetes in different soil ecosystems and effect of media composition on extracellular phosphatase activity. J Soil Sci Plant Nutr 13(1):223–236. https://doi.org/10.4067/S0718-95162013005000020

    Article  Google Scholar 

  43. Zenova GM, Manucharova NA, Zvyagintsev DG (2011) Extremophilic and extremotolerant actinomycetes in different soil types. Eurasian Soil Sci 44(4):417–436. https://doi.org/10.1134/S1064229311040132

    Article  Google Scholar 

  44. Khamna S, Yokota A, Peberdy JF, Lumyong S (2010) Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. Eurasian J Biosci 4:23–32. https://doi.org/10.5053/ejobios.2010.4.0.4

    Article  Google Scholar 

  45. Azman EA, Shamshuddin J, Ishak CF, Ismail R (2014) Increasing rice production using different lime sources on an acid sulphate soil in Merbok, Malaysia. Pertanika J Trop Agric Sci 37(2):223–247

    Google Scholar 

  46. Zvyagintsev DG, Zenova GM, Doroshenko EA, Gryadunova AA, Gracheva TA, Sudnitsyn II (2007) Actinomycete growth in conditions of low moisture. Biol Bullet 34(3):242–247. https://doi.org/10.1134/S1062359007030053

    Article  Google Scholar 

  47. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37(1):189–216. https://doi.org/10.1146/annurev.mi.37.100183.001201

    Article  Google Scholar 

  48. El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38(7):1505–1520. https://doi.org/10.1016/j.soilbio.2005.12.017

    Article  Google Scholar 

  49. George MU, Chandraja CV, Immanuel G, Chandran RP (2011) Petroleum degrading activity of actinomycetes isolated from the coastal areas of Tamilnadu. Int J Agric Environ Biotechnol 4(1):59–65

    Google Scholar 

  50. Essien JP, Udosen ED (2000) Distribution of actinomycetes in oil contaminated ultisols of the Niger Delta Nigeria. J Environ Sci 12(3):296–302

    Google Scholar 

  51. Walter V, Syldatk C, Hausmann R (2010) Screening concepts for the isolation of biosurfactant producing microorganisms. Adv Exp Med Biol 672:1–13. https://doi.org/10.1007/978-1-4419-5979-9_1

    Article  Google Scholar 

  52. Bodour AA, Miller-Maier RM (1998) Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32(3):273–280. https://doi.org/10.1016/S0167-7012(98)00031-1

    Article  Google Scholar 

  53. Lechevalier MP, Lechevalier HA (1974) Nocardia amarae sp. nov., an actinomycete common in foaming activated sludge. Int J Syst Bacteriol 24(2):278–288. https://doi.org/10.1099/00207713-24-2-278

    Article  Google Scholar 

  54. Sezgin M, Lechevalier MP, Karr PR (1988) Isolation and identification of actinomycetes present in activated sludge scum. Water Sci Technol 20(11–12):257–263. https://doi.org/10.2166/wst.1988.0293

    Article  Google Scholar 

  55. Karanth NGK, Deo P, Adi V (1999) Microbial production of biosurfactants and their importance. Curr Sci 77:116–26

    Google Scholar 

  56. Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69(6):3280–3287. https://doi.org/10.1128/AEM.69.6.3280-3287.2003

    Article  Google Scholar 

  57. Khopade A, Ren B, Liu X-Y, Mahadik K, Zhang L, Kokare C (2012) Production and characterization of biosurfactant from marine Streptomyces species B3. J Colloid Interface Sci 367(1):311–318. https://doi.org/10.1016/j.jcis.2011.11.009

    Article  Google Scholar 

  58. Loganathan K, Kumar G, Rao B (2010) Comparison of methods and screening of biosurfactant producing marine actinobacteria isolated from Nicobar marine sediment. The IIOAB 1(2):34–38

    Google Scholar 

  59. Wink JM, Kroppenstedt RM, Ganguli BN, Nadkarni SR, Schumann P, Seibert G, Stackebrandt E (2003) Three new antibiotic producing species of the genus Amycolatopsis, Amycolatopsis balhimycina sp. nov., A. tolypomycina sp. nov., A. vancoresmycina sp. nov., and description of Amycolatopsis keratiniphila subsp. keratiniphila subsp. nov. and A. keratiniphila subsp. nogabecina subsp. nov. Syst Appl Microbiol 26(1):38–46. https://doi.org/10.1078/072320203322337290

    Article  Google Scholar 

  60. Hopmann C, Kurz M, Brönstrup M, Wink J, LeBeller D (2002) Isolation and structure elucidation of vancoresmycin—a new antibiotic from Amycolatopsis sp. ST 101170. Tetrahedron Lett 43(3):435–438. https://doi.org/10.1016/S0040-4039(01)02171-2

    Article  Google Scholar 

  61. Zargar AN, Mishra S, Kumar M, Srivastava P (2022) Isolation and chemical characterization of the biosurfactant produced by Gordonia sp IITR100. PLoS ONE 17(4):e0264202. https://doi.org/10.1371/journal.pone.0264202

    Article  Google Scholar 

  62. Gill KA, Berrué F, Arens JC, Kerr RG (2014) Isolation and structure elucidation of cystargamide, a lipopeptide from Kitasatospora cystarginea. J Nat Prod 77(6):1372–1376. https://doi.org/10.1021/np500122s

    Article  Google Scholar 

  63. Javadi A et al (2021) Production and characterization of biosurfactant by Nocardia species isolated form soil samples in Tehran Tenside. Surfactants Deterg 58(1):74–80. https://doi.org/10.1515/tsd-2020-2263

    Article  Google Scholar 

  64. Yang R et al (2019) Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation. Genomics 111(3):356–366. https://doi.org/10.1016/j.ygeno.2018.02.010

    Article  Google Scholar 

  65. Hristov A, Christova N, Nacheva L, Stoineva I, Kabaivanova L (2014) Biodegradation potential of Nocardia farcinica BN26 for xenobiotics mineralisation. Comptes rendus de l’Académie bulgare des Sciences 67(6):821–830

    Google Scholar 

  66. Christova N, Lang S, Wray V, Kaloyanov K, Konstantinov S, Stoineva I (2015) Production, structural elucidation, and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain. J Microbiol Biotechnol 25(4):439–447. https://doi.org/10.4014/jmb.1406.06025

    Article  Google Scholar 

  67. Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C (2012) Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp B4. Desalination 285:198–204. https://doi.org/10.1016/j.desal.2011.10.002

    Article  Google Scholar 

  68. Konishi M, Nishi S, Fukuoka T, Kitamoto D, Watsuji TO, Nagano Y, Yabuki A, Nakagawa S, Hatada Y, Horiuchi JI (2014) Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant. Marine Biotechnol 16(4):484–493. https://doi.org/10.1007/s10126-014-9568-x

    Article  Google Scholar 

  69. Arifiyanto A, Surtiningsih T, Ni’matuzahroh F, Agustina D, Alami NH (2020) Antimicrobial activity of biosurfactants produced by actinomycetes isolated from rhizosphere of Sidoarjo mud region. Biocatal Agric Biotechnol 24:101513. https://doi.org/10.1016/j.bcab.2020.101513

    Article  Google Scholar 

  70. Elkhawaga MA (2018) Optimization and characterization of biosurfactant from Streptomyces griseoplanus NRRL-ISP5009 (MS1). J Appl Microbiol 124(3):691–707. https://doi.org/10.1111/jam.13665

    Article  Google Scholar 

  71. Seong C-N, Park J-H, Baik K-S (2001) An improved selective isolation of rare actinomycetes from forest soil. J Microbiol 39(1):17–23

    Google Scholar 

  72. Rosmine E, Varghese SA (2016) Isolation of actinomycetes from mangrove and estuarine sediments of Cochin and screening for antimicrobial activity. J Coastal Life Med 4(3):207–210. https://doi.org/10.12980/jclm.4.2016j5-148

    Article  Google Scholar 

  73. Hong K et al (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7(1):24–44. https://doi.org/10.3390/md7010024

    Article  Google Scholar 

  74. Istianto Y, Adji Koesoemowidodo RS, Watanabe Y, Pranamuda H, Marwoto B (2012) Application of phenol pretreatment for the isolation of rare actinomycetes from Indonesian soil. Microbiol Indones 6(1):42–47. https://doi.org/10.5454/mi.6.1.7

    Article  Google Scholar 

  75. Kumar N, Singh R, Mishra S, Singh A, Pachouri UC (2014) Isolation and screening of soil Actinomycetes as source of antibiotics active against bacteria. Int J Microbiol Res 2:12–16

    Article  Google Scholar 

  76. Otoguro M, Hayakawa M, Yamazaki T, Iimura Y (2001) An integrated method for the enrichment and selective isolation of Actinokineospora spp. in soil and plant litter. J Appl Microbiol 91(1):118–130. https://doi.org/10.1046/j.1365-2672.2001.01372.x

    Article  Google Scholar 

  77. Zakharova OS, Zenova GM, Zvyagintsev DG (2003) Some approaches to the selective isolation of actinomycetes of the genus Actinomadura from soil. Microbiol (N Y) 72(1):110–113. https://doi.org/10.1023/A:1022294526830

    Article  Google Scholar 

  78. Talukdar M, Bora TC, Jha DK (2016) Micromonospora: a potential source of antibiotic. In: Purkayastha J (ed) Bioprospecting of indigenous bioresources of North-East India. Springer, Singapore, pp 195–213. https://doi.org/10.1007/978-981-10-0620-3_12

  79. Mahmoud HM, Kalendar AA (2016) Coral-associated actinobacteria: diversity, abundance, and biotechnological potentials. Front Microbiol 7:204. https://doi.org/10.3389/fmicb.2016.00204

  80. Niyomvong N, Pathom-aree W, Thamchaipenet A, Duangmal K (2012) Actinomycetes from tropical limestone caves. Chiang Mai J Sci 39:373–388

    Google Scholar 

  81. Doshi DV, Maniyar JP, Bhuyan SS, Mujumdar SS (2010) Studies on bioemulsifier production by Actinopolyspora sp. A18 isolated from garden soil. Indian J Biotechnol 9:391–396

    Google Scholar 

  82. Salim M, Noureddine B, Nasserdine S, Florence M (2013) Actinomycetes from saline and non-saline soils of Saharan palm groves: taxonomy, ecology and antagonistic properties. Afr J Microbiol Res 7(20):2167–2178. https://doi.org/10.5897/ajmr2013.5656

    Article  Google Scholar 

  83. Vargas Gil S, Pastor S, March GJ (2009) Quantitative isolation of biocontrol agents Trichoderma spp, Gliocladium spp and actinomycetes from soil with culture media. Microbiol Res 164(2):196–205. https://doi.org/10.1016/j.micres.2006.11.022

    Article  Google Scholar 

  84. Baskaran R, Vijayakumar R, Mohan PM (2011) Enrichment method for the isolation of bioactive actinomycetes from mangrove sediments of Andaman Islands, India. Malays J Microbiol 7(1):26–32. https://doi.org/10.21161/mjm.24410

    Article  Google Scholar 

  85. Kämpfer P (2006) The family Streptomycetaceae, Part I: taxonomy. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 538–604. https://doi.org/10.1007/0-387-30743-5_22

  86. Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Ward AC, Bull AT, Goodfellow M (2005) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55(5):1759–1766. https://doi.org/10.1099/ijs.0.63625-0

    Article  Google Scholar 

  87. Horikoshi K, Grant WD (1991) Superbugs: microorganisms in extreme environments. Japan Scientific Societies Press, Tokyo; Springer-Verlag, Berlin

  88. Seckbach J, Oren A (2005) Introduction to the extremophiles. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology, vol 6. Springer, Dordrecht, pp 371–396 https://doi.org/10.1007/1-4020-2522-X_23

  89. Almaary KS, Alharbi NS, Kadaikunnan S, Khaled JM, Rajivgandhi G, Ramachandran G, Kanisha CC, Murugan M, Alanzi KF, Manoharan N (2021) Anti-bacterial effect of marine sea grasses mediated endophytic actinomycetes against K. pneumoniae. J King Saud Univ Sci 33(6):101528. https://doi.org/10.1016/j.jksus.2021.101528

    Article  Google Scholar 

  90. Fernandes CJ, Doddavarapu B, Harry A, Dilip SPS, Ravi L (2021) Isolation and identification of pigment producing Actinomycete Saccharomonospora azurea SJCJABS01. Biomed Pharmacol J 14(4):2261–2269. https://doi.org/10.13005/bpj/2326

    Article  Google Scholar 

  91. Singh LS, Sharma H, Sahoo D (2019) Actinomycetes from soil of Lachung, a pristine high altitude region of Sikkim Himalaya, their antimicrobial potentiality and production of industrially important enzymes. Adv Microbiol 09(08):750–773. https://doi.org/10.4236/aim.2019.98046

    Article  Google Scholar 

  92. Chen C-Y, Baker SC, Darton RC (2007) The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. J Microbiol Methods 70(3):503–510. https://doi.org/10.1016/j.mimet.2007.06.006

    Article  Google Scholar 

  93. Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56(3):339–347. https://doi.org/10.1016/j.mimet.2003.11.001

    Article  Google Scholar 

  94. Banat I, Thavasi R, Jayalakshmi S (2011) Biosurfactants from marine bacterial isolates. In: Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, pp 1367–1373

  95. Viramontes-Ramos S, Cristina Portillo-Ruiz M, Ballinas-Casarrubias Mde L, Torres-Muñoz JV, Rivera-Chavira BE, Nevárez-Moorillón GV (2010) Selection of biosurfactan/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil. Brazilian J Microbiol 41(3):668–675. https://doi.org/10.1590/S1517-83822010000300017

    Article  Google Scholar 

  96. Batista SB, Mounteer AH, Amorim FR, Tótola MR (2006) Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour Technol 97(6):868–875. https://doi.org/10.1016/j.biortech.2005.04.020

    Article  Google Scholar 

  97. Schulz D, Passeri A, Schmidt M, Lang S, Wagner F, Wray V, Gunkel W (1991) Marine Biosurfactants, I. Screening for biosurfactants among crude oil degrading marine microorganisms from the North Sea. Z Naturforsch C J Biosci 46(3–4):197–203. https://doi.org/10.1515/znc-1991-3-407

  98. Burch AY, Browne PJ, Dunlap CA, Price NP, Lindow SE (2011) Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact-regulated production. Environ Microbiol 13(10):2681–2691. https://doi.org/10.1111/j.1462-2920.2011.02534.x

    Article  Google Scholar 

  99. Franzetti A, Caredda P, Ruggeri C, La Colla P, Tamburini E, Papacchini M, Bestetti G (2009) Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 75(6):801–807. https://doi.org/10.1016/j.chemosphere.2008.12.052

    Article  Google Scholar 

  100. Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52(2):154–162. https://doi.org/10.1007/s002530051502

    Article  Google Scholar 

  101. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Minireview Environ Microbiol 3(4):229–236. https://doi.org/10.1046/j.1462-2920.2001.00190.x

    Article  Google Scholar 

  102. Souza FASD, Salgueiro AA, Albuquerque CDC (2012) Production of bioemulsifiers by Yarrowia lipolytica in sea water using diesel oil as the carbon source. Braz J Chem Eng 29(1):61–67. https://doi.org/10.1590/S0104-66322012000100007

    Article  Google Scholar 

  103. Fardami AY, Kawo AH, Yahaya S, Lawal I, Abubakar AS, Maiyadi KA (2022) A review on biosurfactant properties, production and producing microorganisms. J Biochem Microbiol Biotechnol 10(1):5–12. https://doi.org/10.54987/jobimb.v10i1.656

    Article  Google Scholar 

  104. Kokare CR, Kadam SS, Mahadik KR, Chopade BA (2007) Studies on bioemulsifier production from marine Streptomyces sp. S1. Indian J Biotechnol 6(1):78–84

    Google Scholar 

  105. Dyke MI, Gulley SL, Lee H, Trevors JT (1993) Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. J Ind Microbiol 11(3):163–170. https://doi.org/10.1007/BF01583718

    Article  Google Scholar 

  106. Satpute SK, Bhawsar BD, Dhakephalkar PK, Chopade BA (2008) Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Mar Sci 37(3):243–250

    Google Scholar 

  107. Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA (2009) An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf B Biointerfaces 69(2):183–193. https://doi.org/10.1016/j.colsurfb.2008.11.018

    Article  Google Scholar 

  108. Qazi MA, Malik ZA, Qureshi GD, Hameed A, Ahmed S (2013) Yeast extract as the most preferable substrate for optimized biosurfactant production by rhlB gene positive Pseudomonas putida SOL-10 isolate. J Bioremediat Biodegrad 4(7):1–10. https://doi.org/10.4172/2155-6199.1000204

    Article  Google Scholar 

  109. Colla LM, Rizzardi J, Pinto MH, Reinehr CO, Bertolin TE, Costa JAV (2010) Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresour Technol 101(21):8308–8314. https://doi.org/10.1016/j.biortech.2010.05.086

    Article  Google Scholar 

  110. Kannabiran K, Lakshmipathy TD, Prasad ASA, Kannabiran K (2010) Production of biosurfactant and heavy metal resistance activity of Streptomyces sp. VITDDK3-a novel halo tolerant actinomycetes isolated from Saltpan soil. Adv Biol Res (Rennes) 4(2):108–115

    Google Scholar 

  111. Thavasi R, Subramanyam Nambaru VRM, Jayalakshmi S, Balasubramanian T, Banat IM (2011) Biosurfactant production by Pseudomonas aeruginosa from renewable resources. Indian J Microbiol 51(1):30–36. https://doi.org/10.1007/s12088-011-0076-7

    Article  Google Scholar 

  112. Samad MYA, Salleh AB, Razak CNA, Ampon K, Yunus WMZW, Basri M (1990) A lipase from a newly isolated thermophilic Rhizopus rhizopodiformis. World J Microbiol Biotechnol 6(4):390–394. https://doi.org/10.1007/BF01202120

    Article  Google Scholar 

  113. Samad MYA, Razak CNA, Salleh AB, Wan Yunus WMZ, Ampon K, Basri M (1989) A plate assay for primary screening of lipase activity. J Microbiol Methods 9(1):51–56. https://doi.org/10.1016/0167-7012(89)90030-4

    Article  Google Scholar 

  114. Goodfellow M (2012) Phylum XXVI. Actinobacteria phyl. nov. In: Bergey’s Manual® of systematic bacteriology. Springer, New York, pp 33–2028. https://doi.org/10.1007/978-0-387-68233-4_3

  115. Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Sci 311(5757):81–83. https://doi.org/10.1126/science.1119744

    Article  Google Scholar 

  116. Gnah YSA, Harris ND (2006) Determination of musty odor compounds produced by Streptomyces griseus and Streptomyces odorifer. J Food Sci 50(1):132–135. https://doi.org/10.1111/j.1365-2621.1985.tb13293.x

    Article  Google Scholar 

  117. Jüttner F, Watson SB (2007) Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl Environ Microbiol 73(14):4395–4406. https://doi.org/10.1128/AEM.02250-06

    Article  Google Scholar 

  118. Anuar NSS et al (2017) Characterization of musty odor-producing actinomycetes from tropics and effects of temperature on the production of musty odor compounds. Microbes Environ 32(4):352–357. https://doi.org/10.1264/jsme2.ME17109

    Article  Google Scholar 

  119. Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) (2012) Bergey’s Manual® of systematic bacteriology. Volume 5: the actinobacteria, 2nd edn. Springer, New York. https://doi.org/10.1007/978-0-387-68233-4

Download references

Author information

Authors and Affiliations

Authors

Contributions

Adilah Ayoib: investigation, conceptualization, writing original draft preparation, writing—reviewing and editing; Subash C.B. Gopinath: validation, resources, writing original draft preparation, writing—reviewing and editing; Ahmad Ramli Mohd Yahya: resources, writing—reviewing and editing; Latiffah Zakaria: validation, writing—reviewing and editing.

Corresponding author

Correspondence to Adilah Ayoib.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoib, A., Gopinath, S.C.B., Yahya, A. et al. Coal-vitamin medium for improved scheme of isolating biosurfactant-producing actinomycetes of rare species from soil samples. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-022-03691-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03691-8

Keywords

Navigation