Skip to main content
Log in

Investigating the Potential of Fusarium solani and Phanerochaete chrysosporium in the Removal of 2,4,6-TNT

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Past and  recent applications of 2,4,6-trinitrotoluene (TNT) in military and civilian industries have led to contamination of soil and marine ecosystems. Among various TNT remediation techniques, biological remediation is widely accepted for its sustainability, low cost, and scalable applications. This study was designed to isolate a fungus strain from a TNT-contaminated soil to investigate its tolerance to and potential for removal of TNT. Thus, a soil column with a history of periodic TNT amendment was used to isolate dominant strains of fungi Fusarium solani isolate, which is not commonly reported for TNT mineralization and was found predominant in the subsurface layer of the TNT-amended soil. F. solani was investigated for TNT concentration tolerance at 30, 70, and 100 mg/L on agar plates and for TNT removal in liquid cultures at the same given concentrations. F. solani activity was compared with that of a reference soil-born fungus that has been intensively studied for TNT removal (Phanerochaete chrysosporium) obtained from the American Type Culture Collection. On agar media, F. solani showed a larger colony diameter than P. chrysosporium at similar TNT concentrations, indicating its high potential to tolerate toxic levels of TNT as found in contaminated sites. In the liquid culture medium, F. solani was able to significantly produce higher biomass than P. chrysosporium in all TNT concentrations. The TNT removal percentage from the liquid culture at the highest TNT concentration of 100 mg/L reached about 85% with F. solani, while P. chrysosporium was no better than 25% at the end of an 84-h incubation period. Results indicate a significant potential of using F. solani in the bioremediation of polluted TNT soils that overcome the high concentration barrier in the field. However, further investigation is needed to identify enzymatic potential and the most effective applications and possible limitations of this method on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Szala, M., & Sabatini, J. J. (2018). 2,4,6-Trinitrotoluene – A useful starting compound in the synthesis of modern energetic compounds. Zeitschrift für Anorganische und Allgemeine Chemie, 644(5), 262–269. https://doi.org/10.1002/zaac.201700414

    Article  CAS  Google Scholar 

  2. Khilyas, I. V., Lochnit, G., & Ilinskaya, O. N. (2017). Proteomic analysis of 2,4,6-trinitrotoluene degrading yeast Yarrowia lipolytica. Frontiers in Microbiology, 8, 2600. https://doi.org/10.3389/fmicb.2017.02600

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alothman, Z. A., Bahkali, A. H., Elgorban, A. M., Al-Otaibi, M. S., Ghfar, A. A., Gabr, S. A., Wabaidur, S. M., et al. (2020). Bioremediation of explosive TNT by Trichoderma viride. Molecules, 25(6), 1393. https://doi.org/10.3390/molecules25061393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Serrano-González, M. Y., Chandra, R., Castillo-Zacarias, C., Robledo-Padilla, F., Rostro-Alanis, M. J., & Parra-Saldivar, R. (2018). Biotransformation and degradation of 2,4,6-trinitrotoluene by microbial metabolism and their interaction. Defence Technology, 14(2), 151–164. https://doi.org/10.1016/j.dt.2018.01.004

    Article  Google Scholar 

  5. Schuster, R., Strehse, J. S., Ahvo, A., Turja, R., Maser, E., Bickmeyer, U., Lehtonen, K. K. (2021). Exposure to dissolved TNT causes multilevel biological effects in Baltic mussels (Mytilus spp.). Marine Environmental Research, 167, 105264. https://doi.org/10.1016/j.marenvres.2021.105264

  6. Zuo, J., Zhao, X., Ju, X., Qiu, S., Hu, W., Fan, T., & Zhang, J. (2016). A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring cardiac troponin I (cTnI) in the serum. Electroanalysis (New York), 28(9), 2044–2049. https://doi.org/10.1002/elan.201600059

    Article  CAS  Google Scholar 

  7. Gao, W., Wang, T., Zhu, C., Sha, P., Dong, P., & Wu, X. (2022). A ‘sandwich’ structure for highly sensitive detection of TNT based on surface-enhanced Raman scattering. Talanta, 236, 122824. https://doi.org/10.1016/j.talanta.2021.122824

  8. USEPA. (2018). 2018 Edition of the Drinking Water Standards and Health Advisories Tables, in EPA 822-F-18-001. U.S. Environmental Protection Agency.

  9. Spina, F., Cecchi, G., Landinez-Torres, A., Pecoraro, L., Russo, F., Wu, B., Cai, L., et al. (2018). Fungi as a toolbox for sustainable bioremediation of pesticides in soil and water. Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology, 152(3), 474–488. https://doi.org/10.1080/11263504.2018.1445130

    Article  Google Scholar 

  10. Gupta, S., Goel, S. S., Siebner, H., Ronen, Z., & Ramanathan, G. (2023). Transformation of 2, 4, 6-trinitrotoluene by Stenotrophomonas strain SG1 under aerobic and anaerobic conditions. Chemosphere, 311, 137085. https://doi.org/10.1016/j.chemosphere.2022.137085

  11. Ziganshin, A. M., Gerlach, R., Borch, T., Naumov, A. V., & Naumova, R. P. (2007). Production of eight different hydride complexes and nitrite release from 2,4,6-trinitrotoluene by Yarrowia lipolytica. Applied and Environment Microbiology, 73(24), 7898–7905. https://doi.org/10.1128/AEM.01296-07

    Article  CAS  Google Scholar 

  12. Hawari, J., Halasz, A., Beaudet, S., Paquet, L., Ampleman, G., & Thiboutot, S. (1999). Biotransformation of 2, 4, 6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Applied and Environmental Microbiology, 65(7), 2977–2986. https://doi.org/10.1128/AEM.65.7.2977-2986.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, H. Y., & Song, H. G. (2000). Comparison of 2,4,6-trinitrotoluene degradation by seven strains of white rot fungi. Current Microbiology, 41(5), 317–320. https://doi.org/10.1007/s002840010142

    Article  CAS  PubMed  Google Scholar 

  14. Montpas, S., Samson, J., Langlois, É., Lei, J., Piché, Y., & Chênevert, R. (1997). Degradation of 2, 4, 6-trinitrotoluene by Serratia Marcescens. Biotechnology Letters, 19, 291–294. https://doi.org/10.1023/A:1018326228448

  15. Kao, C. M., Lin, B. H., Chen, S. C., Wei, S. F., Chen, C. C., Yao, C. L., & Chien, C. C. (2016). Biodegradation of trinitrotoluene (TNT) by indigenous microorganisms from TNT-contaminated soil, and their application in TNT bioremediation. Bioremediation Journal, 20(3), 165–173. https://doi.org/10.1080/10889868.2016.1148007

    Article  CAS  Google Scholar 

  16. Zaripov, S. A., Naumov, A. V., Abdrakhmanova, J. F., Garusov, A. V., & Naumova, R. P. (2002). Models of 2,4,6-trinitrotoluene (TNT) initial conversion by yeasts. Fems Microbiology Letters, 217(2), 213–217. https://doi.org/10.1111/j.1574-6968.2002.tb11477.x

    Article  CAS  PubMed  Google Scholar 

  17. Xu, M., Liu, D., Sun, P., Li, Y., Wu, M., Liu, W., Maser, E. (2021). Degradation of 2,4,6-trinitrotoluene (TNT): Involvement of protocatechuate 3,4-dioxygenase (P34O) in Buttiauxella sp. S19-1. Toxics, 9(10). https://doi.org/10.3390/toxics9100231

  18. Covino, S., Stella, T., & Cajthaml, T. (2016). Fungal applications in sustainable environmental biotechnology. Fungal Biology, vol. Mycoremediation of Organic Pollutants: Principles, Opportunities, and Pitfalls (pp. 185–231). Springer.

  19. Barra Caracciolo, A., & Terenzi, V. (2021). Rhizosphere microbial communities and heavy metals. Microorganisms, 9(7), 1462. https://doi.org/10.3390/microorganisms9071462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Khanna, K., Kohli, S. K., Ohri, P., Bhardwaj, R., & Ahmad, P. (2022). Agroecotoxicological aspect of cd in soil-plant system: Uptake, translocation and amelioration strategies. Environmental Science and Pollution Research International, 29(21), 30908–30934. https://doi.org/10.1007/s11356-021-18232-5

    Article  CAS  PubMed  Google Scholar 

  21. Lee, S., Lee, S. Y., & Shin, K. S. (2009). Biodegradation of 2,4,6-trinitrotoluene by white-rot fungus Irpex lacteus. Mycobiology, 37(1), 17–20. https://doi.org/10.4489/MYCO.2009.37.1.017

  22. Romero-Silva, R., Sánchez-Reyes, A., Díaz-Rodríguez, Y., Batista-García, R. A., Hernández-Hernández, D., & de Robles, J. T. (2019). Bioremediation of soils contaminated with petroleum solid wastes and drill cuttings by Pleurotus sp. under different treatment scales. SN Applied Sciences, 1(1209), 588673. https://doi.org/10.1007/s42452-019-1236-3

    Article  CAS  Google Scholar 

  23. Carles, L., Rossi, F., Joly, M., Besse-Hoggan, P., Batisson, I., & Artigas, J. (2017). Biotransformation of herbicides by aquatic microbial communities associated to submerged leaves. Environmental Science and Pollution Research International, 24(4), 3664–3674. https://doi.org/10.1007/s11356-016-8035-9

    Article  CAS  PubMed  Google Scholar 

  24. Gumuscu, B., & Tekinay, T. (2013). Effective biodegradation of 2,4,6-trinitrotoluene using a novel bacterial strain isolated from TNT-contaminated soil. International Biodeterioration & Biodegradation, 85, 35–41. https://doi.org/10.1016/j.ibiod.2013.06.007

    Article  CAS  Google Scholar 

  25. Funder, S. (1961). Practical mycology. Manual for identification of fungi. Practical mycology. Manual for identification of fungi. Brøggers Boktr. A/S.

  26. Kornerup, A., & Wanscher, J. H. (1978). Methuen handbook of colour. 3d 1983 reprint ed. E. Methuen.

  27. Ayoub, K., van Hullebusch, E. D., Cassir, M., & Bermond, A. (2010). Application of advanced oxidation processes for TNT removal: A review. Journal of Hazardous Materials, 178(1–3), 10–28. https://doi.org/10.1016/j.jhazmat.2010.02.042

    Article  CAS  PubMed  Google Scholar 

  28. US Environmental Protection Agency. (1994). Nitroaromatics and nitramines by high performance liquid chromatography (HPLC).

  29. Naylor, D., McClure, R., & Jansson, J. (2022). Trends in microbial community composition and function by soil depth. Microorganisms, 10(3). https://doi.org/10.3390/microorganisms10030540

  30. Cabrera, M., Márquez, S. L., & Pérez-Donoso, J. M. (2022). Comparative genomic analysis of Antarctic Pseudomonas isolates with 2, 4, 6-trinitrotoluene transformation capabilities reveals their unique features for xenobiotics degradation. Genes, 13(8), 1354. https://doi.org/10.3390/genes13081354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. The Fusarium laboratory manual.

  32. Sehrawat, A., Phour, M., Kumar, R., & Sindhu, S. S. (2021). Microbial Rejuvenation of Polluted Environment. Bioremediation of pesticides: An eco-friendly approach for environment sustainability (25 vol., pp. 23–84). Springer. 

  33. Spain, J. C. (1995). Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 49(1), 523–555. https://doi.org/10.1146/annurev.mi.49.100195.002515

    Article  CAS  PubMed  Google Scholar 

  34. Tiwari, J., Tarale, P., Sivanesan, S., & Bafana, A. (2019). Environmental persistence, hazard, and mitigation challenges of nitroaromatic compounds. Environmental Science and Pollution Research International, 26(28), 28650–28667. https://doi.org/10.1007/s11356-019-06043-8

    Article  CAS  PubMed  Google Scholar 

  35. Anasonye, F., Winquist, E., Räsänen, M., Kontro, J., Björklöf, K., Vasilyeva, G., Jørgensen, K. S., et al. (2015). Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. International Biodeterioration & Biodegradation, 105, 7–12. https://doi.org/10.1016/j.ibiod.2015.08.003

    Article  CAS  Google Scholar 

  36. Claus, H. (Ed.). (2014). Microbial degradation of 2,4,6-trinitrotoluene in vitro and in natural environments. In: Singh, S. (ed) Biological remediation of explosive residues. Vol. Environmental Science and Engineering (pp. 15–38). Springer.

  37. Muter, O., Potapova, K., Limane, B., Sproge, K., Jakobsone, I., Cepurnieks, G., & Bartkevics, V. (2012). The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil. Journal of Environmental Management, 98, 51–55. https://doi.org/10.1016/j.jenvman.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  38. Okozide, O. E., Adebusoye, S. A., Obayori, O. S., & Rodrigues, D. F. (2021). Aerobic degradation of 2, 4, 6-trinitrophenol by Proteus sp. strain OSES2 obtained from an explosive contaminated tropical soil. Biodegradation, 32, 643–662. https://doi.org/10.1007/s10532-021-09958-7

  39. Manai, I., Miladi, B., El Mselmi, A., Smaali, I., Ben Hassen, A., Hamdi, M., & Bouallagui, H. (2016). Industrial textile effluent decolourization in stirred and static batch cultures of a new fungal strain Chaetomium globosum IMA1 KJ472923. Journal of Environmental Management, 170, 8–14. https://doi.org/10.1016/j.jenvman.2015.12.038

    Article  CAS  PubMed  Google Scholar 

  40. Sepehri, A., & Sarrafzadeh, M. H. (2018). Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor. Chemical Engineering and Processing-Process Intensification, 128, 10–18.

    Article  CAS  Google Scholar 

  41. Wahal, S., & Viamajala, S. (2010). Maximizing algal growth in batch reactors using sequential change in light intensity. Applied Biochemistry and Biotechnology, 161(1–8), 511 – 22. https://doi.org/10.1007/s12010-009-8891-6

  42. Khan, N., Muge, E., Mulaa, F. J., Wamalwa, B., von Bergen, M., Jehmlich, N., & Wick, L. Y. (2023). Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide degradation in nutrient-deprived environments. Isme Journal, 17(4), 570–578. https://doi.org/10.1038/s41396-023-01371-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sardar, H., Ali, M. A., Anjum, M. A., Nawaz, F., Hussain, S., Naz, S., & Karimi, S. M. (2017). Agro-industrial residues influence mineral elements accumulation and nutritional composition of king oyster mushroom (Pleurotus eryngii). Scientia Horticulturae, 225, 327–334. https://doi.org/10.1016/j.scienta.2017.07.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to all the associated personnel in any reference that contributed in/for the purpose of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Elshebli.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibbini, J., Al-Kofahi, S., Davis, L.C. et al. Investigating the Potential of Fusarium solani and Phanerochaete chrysosporium in the Removal of 2,4,6-TNT. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04735-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04735-z

Keywords

Navigation