Skip to main content

Advertisement

Log in

High-performance N-doped activated carbon derived from walnut green peel for supercapacitors

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Activated carbon materials derived from biomass for supercapacitors have received great attention due to their natural abundance and low cost. The agricultural waste walnut green peel can be a promising activated carbon electrode material and resource utilization of it would effectively alleviate the environmental pollution problem. Here we reported the N-doped activated carbon materials (N/ACs) from walnut green peel using melamine as the nitrogen source. N/ACs showed obvious pore structure, high specific surface area, low resistance, and fast charge transfer rate. Thereinto, the optimized N/AC-2 showed the most excellent and better capacitive performance, with the specific capacitance of 304.5 F g−1 at 0.5 A g−1. N/AC-2 exhibited high energy density (40.05 W h kg−1) and power density (22.5 kW kg−1) as the supercapacitor electrode. In addition, the capacitance retention rate of N/AC-2 remained 95.2% after 3000 cycles at 10 A g−1. Our work demonstrated that the prepared N/ACs would be more promising electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhou M, Wang Q, Yuan Y, Luo S-H, Zhang Y-H, Liu X (2021) Biocarbon with different microstructures derived from corn husks and their potassium storage properties. Rare Met 40:3166–3174. https://doi.org/10.1007/s12598-021-01775-4

    Article  Google Scholar 

  2. Wang D, Wang Q, Tan M, Wang S, Luo S, Hou P, Zhang Y, Yan S, Liu X (2022) Biomass CQDs derivate carbon as high-performance anode for K-ion battery. J Alloys Compd 922:166260. https://doi.org/10.1016/j.jallcom.2022.166260

    Article  Google Scholar 

  3. Yan SX, Wang Q, Luo SH, Zhang YH, Liu X, Liu YG, Wang ZY, Hao AM, Yi TF (2020) Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium-ion batteries. J Power Sources 461:228151. https://doi.org/10.1016/j.jpowsour.2020.228151

  4. Liu L, Taberna P-L, Dunn B, Simon P (2021) Future directions for electrochemical capacitors. ACS Energy Lett 6:4311–4316. https://doi.org/10.1021/acsenergylett.1c01981

    Article  Google Scholar 

  5. Jeanmairet G, Rotenberg B, Salanne M (2022) Microscopic simulations of electrochemical double-layer capacitors. Chem Rev 122:10860–10898. https://doi.org/10.1021/acs.chemrev.1c00925

    Article  Google Scholar 

  6. Zhao J, Burke AF (2020) Electrochemical capacitors: materials, technologies and performance. Energy Stor Mater 36:31–55. https://doi.org/10.1016/j.ensm.2020.12.013

    Article  Google Scholar 

  7. Yan SX, Luo SH, Feng J, Li PW, Guo R, Wang Q, Zhang YH, Liu YG, Bao S (2020) Rational design of flower-like FeCo2S4/reduced graphene oxide films: novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. Chem Eng J 381:122695. https://doi.org/10.1016/j.cej.2019.122695

  8. Yan SX, Luo SH, Liu H, Yang L, Wang Q, Zhang YH, Liu X (2022) In-situ partial reduction-sulfurized Fe3O4@FeS based on pickling iron red as a versatile electrode for high-performance lithium ion batteries and supercapacitor devices. Surf Coat Tech 429:127980. https://doi.org/10.1016/j.surfcoat.2021.127980

  9. Yan SX, Luo SH, Wang Q, Zhang YH, Liu X (2021) Rational design of hierarchically sulfide and MXene-reinforced porous carbon nanofibers as advanced electrode for high energy density flexible supercapacitors. Compos Part B Eng 224:109246. https://doi.org/10.1016/j.compositesb.2021.109246

  10. Yan SX, Luo SH, Feng J, Yang L, Li PW, Wang Q, Zhang YH, Liu X, Chang LJ (2021) Asymmetric, flexible supercapacitor based on Fe-Co alloy@sulfide with high energy and power density. ACS Appl Mater Interfaces 13:49952–49963. https://doi.org/10.1021/acsami.1c14537

    Article  Google Scholar 

  11. Prasankumar T, Salpekar D, Bhattacharyya S, Manoharan K, Yadav RM, Campos Mata MA, Miller KA, Vajtai R, Jose S, Roy S, Ajayan PM (2022) Biomass derived hierarchical porous carbon for supercapacitor application and dilute stream CO2 capture. Carbon 199:249–257. https://doi.org/10.1016/j.carbon.2022.07.057

  12. Tian XD, Chen ZC, Hou J, Li ZQ (2022) Sustainable utilization method of using coal gasification fine ash to prepare activated carbon for supercapacitor. J Clean Prod 363:132524. https://doi.org/10.1016/j.jclepro.2022.132524

  13. Wang Y, Chang Z, Qian M, Zhang Z, Lin J, Huang F (2019) Enhanced specific capacitance by a new dual redox-active electrolyte in activated carbon-based supercapacitors. Carbon 143:300–308. https://doi.org/10.1016/j.carbon.2018.11.033

    Article  Google Scholar 

  14. Huang L, Wang S, Zhang Y, Huang XH, Peng JJ, Yang F (2022) Preparation of a N-P co-doped waste cotton fabric-based activated carbon for supercapacitor electrodes. Carbon 188:546. https://doi.org/10.1016/j.carbon.2021.12.013

  15. Chen J, Xie J, Jia CQ, Song C, Hu J, Li H (2022) Economical preparation of high-performance activated carbon fiber papers as self-supporting supercapacitor electrodes. Chem Eng J 450:137938. https://doi.org/10.1016/j.cej.2022.137938

    Article  Google Scholar 

  16. Li D, Zhao L, Cao X, Xiao Z, Nan H, Qiu H (2020) Nickel-catalyzed formation of mesoporous carbon structure promoted capacitive performance of exhausted biochar. Chem Eng J 406:126856. https://doi.org/10.1016/j.cej.2020.126856

    Article  Google Scholar 

  17. Wu H, Yuan W, Yuan X, Cheng L (2022) Atmosphere-free pyrolysis of harakeke fiber: a new chamber-induced activation methodology for porous carbon electrodes in supercapacitors. Energy Stor Mater 50:514–524. https://doi.org/10.1016/j.ensm.2022.05.046

    Article  Google Scholar 

  18. Li W, Yang X, Chen Z, Lv T, Wang X, Qiu J (2022) Synthesis and structure regulation of armor-wearing biomass-based porous carbon: suppression the leakage current and self-discharge of supercapacitors. Carbon 196:136–145. https://doi.org/10.1016/j.carbon.2022.04.037

    Article  Google Scholar 

  19. Shang T, Xu Y, Li P, Han J, Wu Z, Tao Y, Yang Q-H (2020) A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy 79:104531. https://doi.org/10.1016/j.nanoen.2020.104531

    Article  Google Scholar 

  20. Sundriyal S, Shrivastav V, Pham HD, Mishra S, Deep A, Dubal DP (2021) Advances in bio-waste derived activated carbon for supercapacitors: trends, challenges and prospective. Resour Conserv Recycl 169:105548. https://doi.org/10.1016/j.resconrec.2021.105548

    Article  Google Scholar 

  21. Wang F, Liu X, Duan G, Yang H, Cheong JY, Lee J, Ahn J, Zhang Q, He S, Han J, Zhao Y, Kim I-D, Jiang S (2021) Wood-derived, conductivity and hierarchical pore integrated thick electrode enabling high areal/volumetric energy density for hybrid capacitors. Small 17:2102532. https://doi.org/10.1002/smll.202102532

    Article  Google Scholar 

  22. Zhang C, Duan S, Zhou M, Liu Z, Ren H, Sasaki S-i, Wang X-F (2022) Electropolymerized chlorophyll derivative biopolymers for supercapacitors. Chem Eng J 450:138000. https://doi.org/10.1016/j.cej.2022.138000

    Article  Google Scholar 

  23. Liu ZL, Wan X, Wang Q, Tian D, Hu JG, Huang M, Shen F, Zeng YM (2021) Performances of a multi-product strategy for bioethanol, lignin, and ultra-high surface area carbon from lignocellulose by PHP (phosphoric acid plus hydrogen peroxide) pretreatment platform. Renew Sust Energ Rev 150:111503. https://doi.org/10.1016/j.rser.2021.111503

  24. Zhou Y, Qin S, Verma S, Sar T, Sarsaiya S, Ravindran B, Liu T, Sindhu R, Patel AK, Binod P, Varjani S, Rani Singhnia R, Zhang Z, Awasthi MK (2021) Production and beneficial impact of biochar for environmental application: a comprehensive review. Bioresour Technol 337:125451. https://doi.org/10.1016/j.biortech.2021.125451

    Article  Google Scholar 

  25. Sun Y, Xu D, Wang S (2022) Self-assembly of biomass derivatives into multiple heteroatom-doped 3D-interconnected porous carbon for advanced supercapacitors. Carbon 199:258–267. https://doi.org/10.1016/j.carbon.2022.08.026

    Article  Google Scholar 

  26. Zhou M, Yan S-X, Wang Q, Tan M-X, Wang D-Y, Yu Z-Q, Luo S-H, Zhang Y-H, Liu X (2022) Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors. Rare Met 41:2280–2291. https://doi.org/10.1007/s12598-021-01957-0

    Article  Google Scholar 

  27. Jia H, Sun J, Xie X, Yin K, Sun L (2019) Cicada slough-derived heteroatom incorporated porous carbon for supercapacitor: Ultra-high gravimetric capacitance. Carbon 143:309–317. https://doi.org/10.1016/j.carbon.2018.11.011

    Article  Google Scholar 

  28. Bo X, Xiang K, Zhang Y, Shen Y, Chen S, Wang Y, Xie M, Guo X (2019) Microwave-assisted conversion of biomass wastes to pseudocapacitive mesoporous carbon for high-performance supercapacitor. J Energy Chem 39:1–7. https://doi.org/10.1016/j.jechem.2019.01.006

    Article  Google Scholar 

  29. Chen JL, Liu JL, Wu DD, Bai X, Lin YT, Wu TT, Zhang C, Chen DL, Li HZ (2021) Improving the supercapacitor performance of activated carbon materials derived from pretreated rice husk. J Energy Storage 44:103432. https://doi.org/10.1016/j.est.2021.103432

  30. Usha Rani M, Nanaji K, Rao TN, Deshpande AS (2020) Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors. J Power Sources 471:228387. https://doi.org/10.1016/j.jpowsour.2020.228387

    Article  Google Scholar 

  31. Shang Z, An X, Zhang H, Shen M, Baker F, Liu Y, Liu L, Yang J, Cao H, Xu Q, Liu H, Ni Y (2020) Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon 161:62–70. https://doi.org/10.1016/j.carbon.2020.01.020

    Article  Google Scholar 

  32. Fu M, Chen W, Zhu X, Yang B, Liu Q (2019) Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon 141:748–757. https://doi.org/10.1016/j.carbon.2018.10.034

    Article  Google Scholar 

  33. Park S, Seo B, Shin D, Kim K, Choi W (2022) Sodium-chloride-assisted synthesis of nitrogen-doped porous carbon shells via one-step combustion waves for supercapacitor electrodes. Chem Eng J 433:134486. https://doi.org/10.1016/j.cej.2021.134486

    Article  Google Scholar 

  34. El-Mahdy AFM, Yu TC, Kuo S-W (2021) Synthesis of multiple heteroatom–doped mesoporous carbon/silica composites for supercapacitors. Chem Eng J 414:128796. https://doi.org/10.1016/j.cej.2021.128796

    Article  Google Scholar 

  35. Wang M, Yang J, Liu S, Che X, He S, Chen G, Qiu J (2023) Nitrogen-doped porous carbon electrode for aqueous iodide redox supercapacitor. Chem Eng J 451:138501. https://doi.org/10.1016/j.cej.2022.138501

    Article  Google Scholar 

  36. Xia C, Surendran S, Ji S, Kim D, Chae Y, Kim J, Je M, Han MK, Choe WS, Choi CH, Choi H, Kim JK, Sim U (2022) A sulfur self-doped multifunctional biochar catalyst for overall water splitting and a supercapacitor from Camellia japonica flowers. Carbon Energy 4:491–505. https://doi.org/10.1002/cey2.207

    Article  Google Scholar 

  37. Liu ZS, Qin AM, Zhang KY, Lian P, Yin XD, Tan H (2021) Design and structure of nitrogen and oxygen co-doped carbon spheres with wrinkled nanocages as active material for supercapacitor application. Nano Energy 90:106540. https://doi.org/10.1016/j.nanoen.2021.106540

  38. Singh A, Sharma R, Pant D, Malaviya P (2021) Engineered algal biochar for contaminant remediation and electrochemical applications. Sci Total Environ 774:145676. https://doi.org/10.1016/j.scitotenv.2021.145676

    Article  Google Scholar 

  39. Han W, Wang H, Xia K, Chen S, Yan P, Deng T, Zhu W (2020) Superior nitrogen-doped activated carbon materials for water cleaning and energy storing prepared from renewable leather wastes. Environ Int 142:105846. https://doi.org/10.1016/j.envint.2020.105846

    Article  Google Scholar 

  40. Sekhon SS, Kaur P, Park J-S (2021) From coconut shell biomass to oxygen reduction reaction catalyst: Tuning porosity and nitrogen doping. Renew Sust Energ Rev 147:111173. https://doi.org/10.1016/j.rser.2021.111173

    Article  Google Scholar 

  41. Wan Z, Sun Y, Tsang DCW, Khan E, Yip ACK, Ng YH, Rinklebe J, Ok YS (2020) Customised fabrication of nitrogen-doped biochar for environmental and energy applications. Chem Eng J 401:126136. https://doi.org/10.1016/j.cej.2020.126136

    Article  Google Scholar 

  42. Zhang C, Wang Y, Zhang X, Wang R, Kou L, Wang J, Li R, Fan C (2021) Millimeter-level nitrogen modified activated carbon spheres assisted Bi4Ti3O12 composites for bifunctional adsorption/photoreduction of CO2. Chem Eng J 417:128218. https://doi.org/10.1016/j.cej.2020.128218

    Article  Google Scholar 

  43. Park JM, Woo HC, Jhung SH (2021) Effective CO2 adsorption at low pressure over nitrogen-enriched porous carbons, derived from melamine-loaded polyaniline. Chem Eng J 412:128641. https://doi.org/10.1016/j.cej.2021.128641

    Article  Google Scholar 

  44. Mian MM, Liu G, Zhou H (2020) Preparation of N-doped biochar from sewage sludge and melamine for peroxymonosulfate activation: N-functionality and catalytic mechanisms. Sci Total Environ 744:128641. https://doi.org/10.1016/j.scitotenv.2020.140862

    Article  Google Scholar 

  45. Tian N, Gao M, Liu X-H, Liu X, Yang T, Xie W, Wu J (2022) Activated carbon derived from walnut green peel as an electrode material for high-performance supercapacitors. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-02103-7

    Article  Google Scholar 

  46. Martínez-Casillas DC, Mascorro-Gutiérrez I, Arreola-Ramos CE, Villafán-Vidales HI, Arancibia-Bulnes CA, Ramos-Sánchez VH, Cuentas-Gallegos AK (2019) A sustainable approach to produce activated carbons from pecan nutshell waste for environmentally friendly supercapacitors. Carbon 148:403–412. https://doi.org/10.1016/j.carbon.2019.04.017

    Article  Google Scholar 

  47. Sinha P, Yadav A, Tyagi A, Paik P, Yokoi H, Naskar AK, Kuila T, Kar KK (2020) Keratin-derived functional carbon with superior charge storage and transport for high-performance supercapacitors. Carbon 168:419–438. https://doi.org/10.1016/j.carbon.2020.07.007

    Article  Google Scholar 

  48. Pontiroli D, Scaravonati S, Magnani G, Fornasini L, Bersani D, Bertoni G, Milanese C, Girella A, Ridi F, Verucchi R, Mantovani L, Malcevschi A, Riccò M (2019) Super-activated biochar from poultry litter for high-performance supercapacitors. Microporous Mesoporous Mater 285:161–169. https://doi.org/10.1016/j.micromeso.2019.05.002

    Article  Google Scholar 

  49. Gu B, Su H, Chu X, Wang Q, Huang H, He J, Wu T, Deng W, Zhang H, Yang W (2019) Rationally assembled porous carbon superstructures for advanced supercapacitors. Chem Eng J 361:1296–1303. https://doi.org/10.1016/j.cej.2019.01.007

    Article  Google Scholar 

  50. Katsuyama Y, Haba N, Kobayashi H, Iwase K, Kudo A, Honma I, Kaner RB (2022) Macro- and nano-porous 3D-hierarchical carbon lattices for extraordinarily high capacitance supercapacitors. Adv Funct Mater 32:2201544. https://doi.org/10.1002/adfm.202201544

    Article  Google Scholar 

  51. Liu Z, Duan C, Dou S, Yuan Q, Xu J, Liu W-D, Chen Y (2022) Ultrafast porous carbon activation promises high-energy density supercapacitors. Small 18:2200954. https://doi.org/10.1002/smll.202200954

    Article  Google Scholar 

  52. Selvaraj AR, Muthusamy A, Inho-Cho n, Kim H-J, Senthil K, Prabakar K, (2020) Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors. Carbon 174:463–474. https://doi.org/10.1016/j.carbon.2020.12.052

    Article  Google Scholar 

  53. Xu Z, Jin S, Zhang N, Deng W, Seo MH, Wang X (2022) Efficient Zn metal anode enabled by O, N-codoped carbon microflowers. Nano Lett 22:1350–1357. https://doi.org/10.1021/acs.nanolett.1c04709

    Article  Google Scholar 

  54. Yang Y, Wang J, Zuo P, Qu S, Shen W (2021) Layer-stacked graphite-like porous carbon for flexible all-solid-state supercapacitor. Chem Eng J 425:130609. https://doi.org/10.1016/j.cej.2021.130609

    Article  Google Scholar 

  55. Yan SX, Luo SH, Yang L, Feng J, Li PW, Wang Q, Zhang YH, Liu X (2021) Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries. J Adv Ceram 11:158–171. https://doi.org/10.1007/s40145-021-0524-8

  56. Yan SX, Luo SH, Sun MZ, Wang Q, Zhang YH, Liu X (2021) Facile hydrothermal synthesis of urchin-like NiCo2O4 as advanced electrochemical pseudocapacitor materials. Int J Energy Res 45:20186–20198. https://doi.org/10.1002/er.7101

Download references

Acknowledgements

We thank the support by the large instruments and equipment sharing platform of China University of Geosciences (Beijing).

Funding

This work was supported by the National Nature Science Foundation of China (No. 22001240), and Fundamental Research Funds for the Central Universities (No. 2652018056).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by Na Tian and Yue Liu. The first draft of the manuscript was written by Yue Liu and all authors commented on previous versions of the manuscript. Resources and supervision were provided by Xuan-He Liu and Hong Shang. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xuan-He Liu or Hong Shang.

Ethics declarations

Ethical approval

The article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 813 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Tian, N., Liu, XH. et al. High-performance N-doped activated carbon derived from walnut green peel for supercapacitors. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03613-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03613-8

Keywords

Navigation