Skip to main content

Advertisement

Log in

Activated carbon derived from walnut green peel as an electrode material for high-performance supercapacitors

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

How to dispose agricultural waste walnut green peel has been a hard nut to crack during the ripening season. Transforming walnut green peel into activated carbon as electrode materials for energy storage devices would be a potential avenue to reduce the caused environmental pollution. Here, activated porous biomass carbon was successfully prepared by a simple KOH two-step activation of walnut green peel and applied in supercapacitors. Thereinto, the prepared carbon WGL-7 activated at 700 ºC showed high specific surface area (1404.3 m2 g−1), abundant structural defects and pore structure, modest oxygen doping and wettability, and fast charge-transfer. The capacitance of WGL-7 modified electrodes could achieve 236 F g−1 at 0.5 A g−1 in 6 M KOH electrolyte, and its calculated energy density and power density were 31.8 W h kg−1 and 1003.5 W kg−1. The capacitance retention rate remained 94.4% after 3000 cycles at 10 A g−1. These results indicate that walnut green peel-activated carbon as the electrode material of supercapacitor has great capacitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

References

  1. Thomas P, Lai CW, Bin-Johan MR (2019) Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. J Anal Appl Pyrol 140:54–85. https://doi.org/10.1016/j.jaap.2019.03.021

    Article  Google Scholar 

  2. Xu D, Cen HL (2021) A hybrid energy storage strategy based on multivariable fuzzy coordinated control of photovoltaic grid-connected power fluctuations. IET Renew Power Gener 15:1826–1835. https://doi.org/10.1049/rpg2.12152

    Article  Google Scholar 

  3. Olabi AG (2017) Renewable energy and energy storage systems. Energy 136:1–6. https://doi.org/10.1016/j.energy.2017.07.054

    Article  Google Scholar 

  4. Xu Q, Kobayashi T (2015) Advanced electrode materials for electrochemical capacitors. Adv Mater Clean Energy 7:194–215. https://doi.org/10.1201/b18287-10

    Article  Google Scholar 

  5. Yan JJ, Zhu DZ, Lv YK, Xiong W, Liu MX, Gan LH (2020) Water-in-salt electrolyte ion-matched N/O codoped porous carbons for high-performance supercapacitors. Chin Chem Lett 31:579–582. https://doi.org/10.1016/j.cclet.2019.05.035

    Article  Google Scholar 

  6. Goldfarb JL, Dou GL, Salari M, Grinstaff MW (2017) Biomass-based fuels and activated carbon electrode materials: an integrated approach to green energy systems. ACS Sustain Chem Eng 5:3046–3054. https://doi.org/10.1021/acssuschemeng.6b02735.s001

    Article  Google Scholar 

  7. Lu MW, Huang Y, Chen C (2020) Cedarwood Bark-derived hard carbon as an anode for high-performance sodium-ion batteries. Energy Fuels 34:11489–11497. https://doi.org/10.1021/acs.energyfuels.0c01841

    Article  Google Scholar 

  8. Zhou H, Zhou YM, Li L, Li YH, Liu XQ, Zhao P, Gao B (2019) Amino acid protic ionic liquids: multifunctional carbon precursor for N/S codoped hierarchically porous carbon materials toward supercapacitive energy storage. ACS Sustain Chem Eng 7:9281–9290. https://doi.org/10.1021/acssuschemeng.9b00279

    Article  Google Scholar 

  9. Guna V, Ilangovan M, Prasad MGA, Reddy N (2017) Water hyacinth: a unique source for sustainable materials and products. ACS Sustain Chem Eng 5:4478–4490. https://doi.org/10.1021/acssuschemeng.7b00051

    Article  Google Scholar 

  10. Shanmugapriya S, Surendran S, Lee YS, Selvan RK (2019) Improved surface charge storage properties of Prosopis juliflora (pods) derived onion–like porous carbon through redox-mediated reactions for electric double layer capacitors. Appl Sur Sci 492:896–908. https://doi.org/10.1016/j.apsusc.2019.06.147

    Article  Google Scholar 

  11. Kobina SD, Kobina SE, Lv XM (2020) Application of biomass-derived nitrogen-doped carbon aerogels in electrocatalysis and supercapacitors. Chem Electro Chem 7:3695–3712. https://doi.org/10.1002/celc.202000829

    Article  Google Scholar 

  12. Liu GW, Qiu L, Deng H, Wang JB, Yao L, Deng LB (2020) Ultrahigh surface area carbon nanosheets derived from lotus leaf with super capacities for capacitive deionization and dye adsorption. Appl Surf Sci 524:146485. https://doi.org/10.1016/j.micromeso.2019.05.002

    Article  Google Scholar 

  13. Pontiroli D, Scaravonati S, Magnani G, Fornasini L, Bersani D, Bertoni G, Milanese C, Girella A, Ridi F, Verucchi R, Mantovani L, Malcevschi A, Riccò M (2019) Super-activated biochar from poultry litter for high-performance supercapacitors. Micropor Mesopor Mat 285:161–169. https://doi.org/10.1016/j.micromeso.2019.05.002

    Article  Google Scholar 

  14. Yang HF, Sun XY, Zhu H, Yu YM, Zhu QW, Fu ZX, Ta SW, Wang LX, Zhu HK, Zhang QT (2020) Nano-porous carbon materials derived from different biomasses for high performance supercapacitors. Ceram Int 46:5811–5820. https://doi.org/10.1016/j.ceramint.2019.11.031

    Article  Google Scholar 

  15. Wang S, Lv L, Shen TR, Gan LH (2018) Research progress in preparation of biomass-derived mesoporous carbon materials. Modern Chemical Industry 38:23–28

    Google Scholar 

  16. Lian J, Xiong LS, Cheng R, Pang DQ, Tian XQ, Lei J, He R, Yu XF, Duan T, Zhu WK (2019) Ultra-high nitrogen content biomass carbon supercapacitors and nitrogen forms analysis. J Alloys Compd 809:151664. https://doi.org/10.1016/j.jallcom.2019.151664

    Article  Google Scholar 

  17. Liu P, Cai WQ, Wei JH, Cai ZJ, Zhu MY, Han BW, Yang ZC, Chen JW (2019) Ultrafast preparation of saccharide-derived carbon microspheres with excellent dispersibility via ammonium persulfate-assisted hydrothermal carbonization. J Mater Chem A 32:1880–1885. https://doi.org/10.1039/c9ta05557f

    Article  Google Scholar 

  18. Nie GD, Zhao XW, Jiang JM, Luan YX, Shi JL, Liu JM, Kou ZK, Wang J, Long YZ (2020) Flexible supercapacitor of high areal performance with vanadium/cobalt oxides on carbon nanofibers as a binder-free membrane electrode. Chem Eng J 402:126924. https://doi.org/10.1016/j.cej.2020.126294

    Article  Google Scholar 

  19. Ouyang YH, Xing T, Chen YL, Zheng LP, Peng J, Wu C, Chang BB, Luo ZG, Wang XY (2020) Hierarchically structured spherical nickel cobalt layered double hydroxides particles grown on biomass porous carbon as an advanced electrode for high energy asymmetric supercapacitor. J Energy Storage 30:101454. https://doi.org/10.1016/j.est.2020.101454

    Article  Google Scholar 

  20. Liu XB, Zou S, Liu KX, Lv C, Wu ZP, Yin YH, Liang TX, Xie ZL (2018) Highly compressible three-dimensional graphene hydrogel for foldable all-solid-state supercapacitor. J Power Sources 384:214–222. https://doi.org/10.1016/j.jpowsour.2018.02.087

    Article  Google Scholar 

  21. Yang X, Jiang ZH, Fei BH, Ma JF, Liu XG (2018) Graphene functionalized bio-carbon xerogel for achieving high-rate and high-stability supercapacitors. Electrochim Acta 282:813–821. https://doi.org/10.1016/j.electacta.2018.06.131

    Article  Google Scholar 

  22. Li FF, Wang XL, Sun RC (2017) A metal-free and flexible supercapacitor based on redox-active lignosulfonate functionalized graphene hydrogels. J Mater Chem A 5:20643–20650. https://doi.org/10.1039/c7ta03789a

    Article  Google Scholar 

  23. Cui ZX, Gao XL, Wang JP, Yu JH, Dong HZ, Zhang Q, Yu LY, Dong LF (2018) Synthesis and supercapacitance of Co3O4 supported on porous carbon derived from wheat flour. ECS Meeting Abstracts 7:M161–M165. https://doi.org/10.1149/2.0141810jss

    Article  Google Scholar 

  24. Karthikeyan K, Amaresh S, Lee SN, Sun XL, Aravindan V, Lee YG, Lee YS (2014) Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons. Chem Sus Chem 7:1435–1442. https://doi.org/10.1002/cssc.201301262

    Article  Google Scholar 

  25. Selvaraj AR, Muthusamy A, In-ho-Cho K-J, Senthil K, Prabakar K (2021) Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheets electrodes for high energy density supercapacitors. Carbon 174:463–474. https://doi.org/10.1016/j.carbon.2020.12.052

    Article  Google Scholar 

  26. Zhou XF, Wang BB, Jia ZR, Zhang XD, Liu XH, Wang KK, Xu BH, Wu GL (2021) Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance. J Colloid Interface Sci 582:515–525. https://doi.org/10.1016/j.jcis.2020.08.087

    Article  Google Scholar 

  27. Fang ZM, Cao L, Lai FL, Kong DB, Du XS, Lin HJ, Lin ZD, Zhang P, Li W (2020) Carbon nano bowl array derived from a corncob sponge/carbon nanotubes/polymer composite and its electrochemical properties. Compos Sci and Technol 183:1007792. https://doi.org/10.1016/j.compscitech.2019.107792

    Article  Google Scholar 

  28. Zhang LQ, Zhang YJ, Sha L, Ji XX, Chen HL, Zhao X (2021) Enhanced electrochemical performance of Si-carbon materials from Larch waste by filtration liquefaction residue process. Electrochim Acta 370:137813. https://doi.org/10.1016/j.electacta.2021.137813

    Article  Google Scholar 

  29. Taer E, Apriwandi A, Ningsih YS, Taslim R, Riau I (2019) Preparation of activated carbon electrode from pineapple crown waste for supercapacitor application. Int J Electrochem Sci 14:2462–2475. https://doi.org/10.20964/2019.03.17

    Article  Google Scholar 

  30. Du WM, Zhang ZR, Du LG, Fan XF, Shen ZW, Ren XR, Zhao YP, Wei CZ, Wei SH (2019) Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors. J Alloys Compd 797:1031–1040. https://doi.org/10.1016/j.jallcom.2019.05.207

    Article  Google Scholar 

  31. Zhao YQ, Lu M, Tao PY, Zhang YJ, Gong XT, Yang Z, Zhang GQ, Li HL (2016) Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J Power Sources 307:391–400. https://doi.org/10.1016/j.jpowsour.2016.01.020

    Article  Google Scholar 

  32. Zhu XQ, Yu S, Xu KT, Zhang Y, Zhang LM, Lou GB, Wu YT, Zhu EH, Chen H, Shen ZH, Bao BF, Fu SY (2018) Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem Eng Sci 181:36–45. https://doi.org/10.1016/j.ces.2018.02.004

    Article  Google Scholar 

  33. Seredych M, Jurcakova DH, Lu GQ, Bandosz TJ (2008) Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46:1475–1488. https://doi.org/10.1016/j.carbon.2008.06.027

    Article  Google Scholar 

  34. Surya K, Michael MS (2021) Hierarchical porous activated carbon prepared from biowaste of lemon peel for electrochemical double layer capacitors. Biomass Bioenergy 152:106175. https://doi.org/10.1016/j.biombioe.2021.106175

    Article  Google Scholar 

  35. Yahya MD, Obayomi KS, Orekoya BA, Olugbenga AG, Akoh B (2020) Process evaluation study on the removal of Ni(II) and Cu(II) ions from an industrial paint effluent using kola nut pod as an adsorbent. J Disper Sci Technol 1-9. https://doi.org/10.1080/01932691.2020.1822178

  36. Fang J, Guo D, Kang CX, Wan SY, Fu LK, Liu QM (2019) N, O-enriched hierarchical porous graphite carbon flake for high performance supercapacitors. J Electroanal Chem 851:113467. https://doi.org/10.1016/j.jelechem.2019.113467

    Article  Google Scholar 

  37. Lin XX, Tan B, Peng L, Wu ZF, Xie ZL (2016) Ionothermal synthesis of microporous and mesoporous carbon aerogels from fructose as electrode materials for supercapacitors. J Mater Chem 4:4497–4505. https://doi.org/10.1039/c6ta00681g

    Article  Google Scholar 

  38. Uddin MK, Nasar A (2020) Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations. Sci Rep 10:7983. https://doi.org/10.1038/s41598-020-64745-3

    Article  Google Scholar 

  39. Park D, Lim SR, Yun YS, Park JM (2007) Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere 70:298–305. https://doi.org/10.1016/j.chemosphere.2007.06.007

    Article  Google Scholar 

  40. Shen GZ, Yang AH, Zou GH (2016) Research progress on chemical constituents and biological activities of Qinglongyi. China J Chin Mater Med: 1–7

  41. Li SJ, Han KH (2019) Preparation and electrochemical properties of algae-based super activated carbon based on “egg-box” structure. J of Mater Engine 47:97–104

    Google Scholar 

  42. Jiang WC, Li LY, Pan JQ, Senthil RA, Jin X, Cai JQ, Wang J, Liu XG (2019) Hollow-tubular porous carbon derived from cotton with high productivity for enhanced performance supercapacitor. J Power Sources 438:226936. https://doi.org/10.1016/j.jpowsour.2019.226936

    Article  Google Scholar 

  43. Liang ZL, Yang Y, Li H, Liu LY, Shi ZC (2020) Lithium storage performance of hard carbons anode materials prepared by different precursors. J Electrochem 27:177–184

    Google Scholar 

  44. Rajesh M, Manikandan R, Park S, Kim BC, Cho WJ, Yu KH, Raj CJ (2020) Pinecone biomass-derived activated carbon: the potential electrode material for the development of symmetric and asymmetric supercapacitors. Int J Energy Res 44:8591–8605. https://doi.org/10.1002/er.5548

    Article  Google Scholar 

  45. Lan DW, Chen MY, Liu YC, Liang QL, Tu WW, Chen YY, Liang JJ, Qiu F (2020) Preparation and characterization of high value-added activated carbon derived from biowaste walnut shell by KOH activation for supercapacitor electrode. J Mater Sci Mater Electron 31:18541–18553. https://doi.org/10.1007/s10854-020-04398-0

    Article  Google Scholar 

  46. Wang C, Xiong Y, Wang HW, Sun QF (2018) All-round utilization of biomass derived all-solid-state asymmetric carbon-based supercapacitor. J Colloid Interface Sci 528:349–359. https://doi.org/10.1016/j.jcis.2018.05.103

    Article  Google Scholar 

  47. Jiang LY, Han SOK, Pirie M, Kim HH, Seong YH, Kim H, Foord JS (2021) Seaweed biomass waste-derived carbon as an electrode material for supercapacitor. Energy Environ 32:1117–1129. https://doi.org/10.1177/0958305X19882398

    Article  Google Scholar 

  48. Zhang W, Xu J, Hou D, Yin J, Liu D, He Y, Lin H (2018) Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. J Colloid Interf Sci 530:338–344. https://doi.org/10.1016/j.jcis.2018.06.076

    Article  Google Scholar 

  49. Islam MA, Ong HL, Villagracia ARA, Halim KA, Ganganboina AB, Doong R-A (2021) Biomass–derived cellulose nanofibrils membrane from rice straw as sustainable separator for high performance supercapacitor. Ind Crops Prod. 170:113694. https://doi.org/10.1016/j.indcrop.2021.113694

    Article  Google Scholar 

  50. Rajendiran R, Nallal M, Park KH, Li OL, Kim HJ, Prabakar K (2019) Mechanochemical assisted synthesis of heteroatoms inherited highly porous carbon from biomass for electrochemical capacitor and oxygen reduction reaction electrocatalysis. Electrochim Acta 317:1–9. https://doi.org/10.1016/j.electacta.2019.05.139

    Article  Google Scholar 

  51. Ali AM, Supriya S, Chong KF, Essam SR, Algarni H, Maiyalagan T, Hegde G (2021) Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Convers Biorefinery 11:1311–1323. https://doi.org/10.1007/s13399-019-00520-3

    Article  Google Scholar 

  52. Mohammed AA, Chen C, Zhu ZH (2019) Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells. J Colloid Interf Sci 538:308–319. https://doi.org/10.1016/j.jcis.2018.11.103

    Article  Google Scholar 

  53. Shao YB, Xu LF, Hu ZY, Zhao GL, Li JQ, Gan QQ, Tang QQ, Dai W, Ouyang MG (2021) Pseudo-steady state of high-frequency resistance for polymer electrolyte membrane fuel cell: effect of in-plane heterogeneity. J Electrochem Soc 168:084509. https://doi.org/10.1149/1.1365141

    Article  Google Scholar 

Download references

Funding

This work was supported by NSFC (21603194) and Fundamental Research Funds for the Central Universities (35842019057).

Author information

Authors and Affiliations

Authors

Contributions

Na Tian: conceptualization, validation, writing.

Man Gao & Xiaoming Liu: methodology, resources.

Tiantian Yang & Wenke Xie: visualization, formal analysis.

Xuan-He Liu & Jing Wu: supervision.

Corresponding authors

Correspondence to Xuan-He Liu or Jing Wu.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 161 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, N., Gao, M., Liu, XH. et al. Activated carbon derived from walnut green peel as an electrode material for high-performance supercapacitors. Biomass Conv. Bioref. 13, 16781–16789 (2023). https://doi.org/10.1007/s13399-021-02103-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02103-7

Keywords

Navigation