Skip to main content
Log in

Cistus monspeliensis extract as a prospective biostimulant in enhancing tolerance to cadmium in sorghum plant

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Sorghum bicolor (sorghum) is a species known for accumulating high quantities of cadmium (Cd), which can damage physiological and metabolic functions, impede growth, and reduce yield. Maintaining sorghum’s production, therefore, requires enhancing its tolerance to the toxic effects of Cd. In this study, we investigate the effects of Cistus monspeliensis extract (CME) on Cd stress tolerance in sorghum. Sorghum plants exposed to Cd (200 μM) showed a decrease in their growth, biomass, and chlorophyll content compared to unstressed ones. However, CME supplementation (5 mg/l, 20 mg/l, and 60 mg/l) to the stressed plants reversed the detrimental effect of Cd and elevated biomass and pigment content. CME also reduced superoxide ions (O2) accumulation and boosted the activities of antioxidant system-related enzymes: superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST). Moreover, through examining several carbon–nitrogen enzyme activities (phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (NAD-MDH), glutamine synthase (GS), glutamate dehydrogenase (GDH), and aspartate aminotransferase (AAT)), we discovered that CME supplementation modulated the perturbations of carbon and nitrogen metabolism in sorghum plants under Cd stress. CME, therefore, appears to improve Cd stress tolerance by upregulating antioxidant defense enzymes, decreasing ROS production, and improving carbon metabolism and nitrogen assimilation, thus leading to a better growth rate. CME’s Cd stress alleviation effect was generally more prominent at 5 mg/L and 20 mg/L.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This declaration is not applicable.

References

  1. Geng N et al (2019) Bioaccumulation of potentially toxic elements by submerged plants and biofilms: a critical review. Environ Int 131:105015. https://doi.org/10.1016/j.envint.2019.105015

    Article  Google Scholar 

  2. Palansooriya KN, Shaheen SM, Chen SS, Tsang DC, Hashimoto Y, Hou D, Bolan NS, Rinklebe J, Ok YS (2020) Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ Int 134:105046. https://doi.org/10.1016/j.envint.2019.105046

    Article  Google Scholar 

  3. Atabayeva SD, Minocha R, Minocha SC, Rakhymgozhina A, Nabieva AM, Nurmahanova AC, Кenzhebayeva SS, Alybayeva RA, Asrandina SS (2020) Response of plants to cadmium stress. Int J Biol Che vol. 13, no 1, p. 109‑117. https://doi.org/10.26577/ijbch.2020.v13.i1.11.

  4. Song W, Chen S, Liu J, Chen L, Song N, Li N, Liu B (2015) Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. J Integr Agric 14(9):1845–1854. https://doi.org/10.1016/S2095-3119(14)60926-6

    Article  Google Scholar 

  5. Adil MF, Sehar S, Chen G, Chen ZH, Jilani G, Chaudhry AN, Shamsi IH (2020) Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological/ultrastructural adjustments. Ecotoxicol Environ Saf 190:110076. https://doi.org/10.1016/j.ecoenv.2019.110076

    Article  Google Scholar 

  6. Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32(1):1–12. https://doi.org/10.1007/s10653-009-9273-2

    Article  Google Scholar 

  7. Mahajan P, Kaushal J (2018) Role of phytoremediation in reducing cadmium toxicity in soil and water. J. Toxicol., vol. 2018. https://doi.org/10.1155/2018/4864365

  8. Imran M et al (2020) Molybdenum supply alleviates the cadmium toxicity in fragrant rice by modulating oxidative stress and antioxidant gene expression. Biomolecules 10(11):1582. https://doi.org/10.3390/biom10111582

    Article  Google Scholar 

  9. Sebastian A, Prasad MNV (2019) Mitigation of cadmium stress in cereals: molecular signaling and agronomic aspects. In Cadmium Tolerance in Plants, Elsevier, p. 401‑422. https://doi.org/10.1016/B978-0-12-815794-7.00015-1

  10. Zulfiqar U et al (2022) Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; a comprehensive review. Front Plant Sci 13:773815–773815. https://doi.org/10.3389/fpls.2022.773815

    Article  Google Scholar 

  11. Techio VH, de Castro EM, de Faria MR, Palmieri MJ (2013) Reproductive, cellular, and anatomical alterations in Pistia stratiotes L plants exposed to cadmium. Water Air Soil Pollut 224:31–8. https://doi.org/10.1007/s11270-013-1454-z

    Article  Google Scholar 

  12. Li J, Yu J, Du D, Liu J, Lu H, Yan C (2019) Analysis of anatomical changes and cadmium distribution in Aegiceras corniculatum (L) Blanco roots under cadmium stress. Mar. Pollut. Bull. 149:110536. https://doi.org/10.1016/j.marpolbul.2019.110536

    Article  Google Scholar 

  13. Liza SJ, Shethi KJ, Rashid P (2020) Effects of cadmium on the anatomical structures of vegetative organs of chickpea (Cicer arientinum L). Dhaka Univ. J. Biol. Sci. 29(1):45–52. https://doi.org/10.3329/dujbs.v29i1.46530

    Article  Google Scholar 

  14. Bora MS, Sarma KP (2021) Anatomical and ultrastructural alterations in Ceratopteris pteridoides under cadmium stress: a mechanism of cadmium tolerance. Ecotoxicol Environ Saf 218:112285. https://doi.org/10.1016/j.ecoenv.2021.112285

    Article  Google Scholar 

  15. Shanmugaraj BM, Malla A, Ramalingam S (2019) Cadmium stress and toxicity in plants: an overview. Cadmium Toxic. Toler. Plants, p. 1‑17. https://doi.org/10.1016/B978-0-12-814864-8.00001-2

  16. Paterson AH et al. (2009) The Sorghum bicolor genome and the diversification of grasses. nature, vol. 457, no 7229, p. 551‑556. https://doi.org/10.1038/nature07723

  17. Bouargalne Y, Ben Mrid R, Bouchmaa N, Zouaoui Z, Benmrid B, Kchikich A, El Omari R, Kabach I, Mohamed N (2022) Genetic diversity for agromorphological traits, phytochemical profile, and antioxidant activity in Moroccan sorghum ecotypes. Sci Rep 12(1):1–13. https://doi.org/10.1038/s41598-022-09810-9

    Article  Google Scholar 

  18. de Morais Cardoso L, Pinheiro SS, Martino HSD, Pinheiro-Sant’Ana HM, (2017) Sorghum (Sorghum bicolor L): Nutrients, bioactive compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr. 57(2):372–390. https://doi.org/10.1080/10408398.2014.887057

    Article  Google Scholar 

  19. Ben Mrid R et al. (2019) Phytochemical characterization, antioxidant and in vitro cytotoxic activity evaluation of Juniperus oxycedrus subsp. oxycedrus needles and berries. Molecules, vol. 24, no 3, p. 502. https://doi.org/10.3390/molecules24030502

  20. Soudek P, Petrová Š, Vaňková R, Song J, Vaněk T (2014) Accumulation of heavy metals using Sorghum sp. Chemosphere 104:15–24. https://doi.org/10.1016/j.chemosphere.2013.09.079

    Article  Google Scholar 

  21. Da-lin L, Kai-qi H, Jing-jing M, Wei-wei Q, Xiu-ping W, Shu-pan Z (2011) Effects of cadmium on the growth and physiological characteristics of sorghum plants. Afr J Biotechnol 10(70):15770–15776. https://doi.org/10.5897/AJB11.848

    Article  Google Scholar 

  22. Jawad Hassan M et al (2020) Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants 9(11):1575. https://doi.org/10.3390/plants9111575

    Article  Google Scholar 

  23. Ben Mrid R, Benmrid B, Hafsa J, Boukcim H, Sobeh M, Yasri A (2021) Secondary metabolites as biostimulant and bioprotectant agents: a review. Sci. Total Environ., p. 146204. https://doi.org/10.1016/j.scitotenv.2021.146204

  24. Para\djiković N, Teklić T, Zeljković S, Lisjak M, Špoljarević M (2019) Biostimulants research in some horticultural plant species—A review. Food Energy Secur., vol. 8, no 2, p. e00162. https://doi.org/10.1002/fes3.162

  25. Ali Q et al. (2020) Plant-based biostimulants and plant stress responses. In Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I, Springer, p. 625‑661. https://doi.org/10.1007/978-981-15-2156-0_22

  26. Zulfiqar F, Casadesús A, Brockman H, Munné-Bosch S (2020) An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci 295:110194. https://doi.org/10.1016/j.plantsci.2019.110194

    Article  Google Scholar 

  27. Howladar SM (2014) A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicol Environ Saf 100:69–75. https://doi.org/10.1016/j.ecoenv.2013.11.022

    Article  Google Scholar 

  28. Alharby HF, Al-Zahrani HS, Hakeem KR, Alsamadany H, Desoky ESM, Rady MM (2021) Silymarin-enriched biostimulant foliar application minimizes the toxicity of cadmium in maize by suppressing oxidative stress and elevating antioxidant gene expression. Biomolecules 11(3):465. https://doi.org/10.3390/biom11030465

    Article  Google Scholar 

  29. Rady MM, Desoky ES, Elrys AS, Boghdady MS (2019) Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? South Afr. J Bot 121:294–305. https://doi.org/10.1016/j.sajb.2018.11.019

    Article  Google Scholar 

  30. Thanaa SM, Nabila EK, Abou Rayya MS, Eisa RA (2016) Response of nonpareil seedlings almond to foliar application of licorice root extract and bread yeast suspend under south Sinai conditions. J Innov Pharm Biol Sci 3:123–132

    Google Scholar 

  31. Ali M, Cheng Z, Hayat S, Ahmad H, Ghani MI, Tao LIU (2019) Foliar spraying of aqueous garlic bulb extract stimulates growth and antioxidant enzyme activity in eggplant (Solanum melongena L). J. Integr. Agric. 18(5):1001–1013. https://doi.org/10.1016/S2095-3119(18)62129-X

    Article  Google Scholar 

  32. Mechbal N, Bouhrim M, Bnouham M, Hammouti B, Karzazi Y, Kaya S, Serdaroğlu G (2021) Anticorrosive and antioxidant effect of the aqueous extract of the leaves, flowers, and stems of Cistus monspeliensis L: experimental and computational study. J Mol Liq 331:115771. https://doi.org/10.1016/j.molliq.2021.115771

    Article  Google Scholar 

  33. Bouamama H, Noel T, Villard J, Jana Benharref A, M, (2006) Antimicrobial activities of the leaf extracts of two Moroccan Cistus L species. J. Ethnopharmacol. 104(1–2):104–107. https://doi.org/10.1016/j.jep.2005.08.062

    Article  Google Scholar 

  34. Vitali F, Pennisi G, Attaguile G, Savoca F, Tita B (2011) Antiproliferative and cytotoxic activity of extracts from Cistus incanus L and Cistus monspeliensis L on human prostate cell lines. Nat. Prod. Res. 25(3):188–202. https://doi.org/10.1080/14786410802583148

    Article  Google Scholar 

  35. Rebaya A, Belghith SI, Hammrouni S, Maaroufi A, Ayadi MT, Chérif JK (2016) Antibacterial and antifungal activities of ethanol extracts of Halimium halimifolium, Cistus salviifolius and Cistus monspeliensis. Int J Pharm Clin Res 8(4):243–247

    Google Scholar 

  36. Barrajón-Catalán E, Fernández-Arroyo S, Roldán C, Guillén E, Saura D, Segura-Carretero A, Micol V (2011) A systematic study of the polyphenolic composition of aqueous extracts deriving from several Cistus genus species: evolutionary relationship. Phytochem Anal 22(4):303–312. https://doi.org/10.1002/pca.1281

    Article  Google Scholar 

  37. Zalegh I, Akssira M, Bourhia M, Mellouki F, Rhallabi N, Salamatullah AM, Alkatham MS, Alyahya HK, Mhand RA (2021) A review on cistus sp.: Phytochemical and antimicrobial activities. Plants, vol. 10, no 6, p. 1214. https://doi.org/10.3390/plants10061214

  38. Papaefthimiou D, Papanikolaou A, Falara V, Givanoudi S, Kostas S, Kanellis AK (2014) Genus Cistus: a model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Front Chem 2:35. https://doi.org/10.3389/fchem.2014.00035

    Article  Google Scholar 

  39. Pelot KA, Chen R, Hagelthorn DM, Young CA, Addison JB, Muchlinski A, Tholl D, Zerbe P (2018) Functional diversity of diterpene synthases in the biofuel crop switchgrass. Plant Physiol 178(1):54–71. https://doi.org/10.1104/pp.18.00590

    Article  Google Scholar 

  40. Bouchmaa N, Mrid RB, Boukharsa Y, Bouargalne Y, Nhiri M, Idir A, Taoufik J, Ansar M, Zyad A (2019) Reactive oxygen species-mediated apoptosis and cytotoxicity of newly synthesized pyridazin-3-ones in P815 (murin mastocytoma) cell line. Drug Res 69(10):528–536. https://doi.org/10.1055/a-0762-3775

    Article  Google Scholar 

  41. Kubiś J (2008) Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves. J Plant Physiol 165(4):397–406. https://doi.org/10.1016/j.jplph.2007.02.005

    Article  Google Scholar 

  42. Arnon D (1949) Copper enzymes in isolated chloroplast. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1

    Article  Google Scholar 

  43. Ehmann A (1977) The Van Urk-Salkowski reagent—a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J Chromatogr A 132(2):267–276. https://doi.org/10.1016/S0021-9673(00)89300-0

    Article  Google Scholar 

  44. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  Google Scholar 

  45. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287. https://doi.org/10.1016/0003-2697(71)90370-8

    Article  Google Scholar 

  46. Bouchmaa N, Ben Mrid R, Boukharsa Y, Nhiri M, Ait Mouse H, Taoufik J, Ansar M, Zyad A (2018) Cytotoxicity of new pyridazin-3 (2H)-one derivatives orchestrating oxidative stress in human triple-negative breast cancer (MDA-MB-468). Arch Pharm (Weinheim) 351(12):1800128. https://doi.org/10.1002/ardp.201800128

    Article  Google Scholar 

  47. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8

    Article  Google Scholar 

  48. Latique S et al (2021) Foliar application of ulva rigida water extracts improves salinity tolerance in wheat (Triticum durum L). Agronomy 11(2):265. https://doi.org/10.3390/agronomy11020265

    Article  Google Scholar 

  49. Ben Mrid R, El Omari R, Bouargalne Y, El Mourabit N, Nhiri M (2017) Activities of carbon and nitrogen metabolism enzymes during germinating sorghum seeds and early seedlings growth. Cereal Res Commun 45(4):587–597. https://doi.org/10.1556/0806.45.2017.044

    Article  Google Scholar 

  50. El Omari R, Ben Mrid R, Amakran A, Nhiri M (2018) Effect of fungicide (Maneb) on antioxidant system and carbon assimilation in leaves of sorghum plants. Russ J Plant Physiol 65(2):237–243. https://doi.org/10.1134/S1021443718020103

    Article  Google Scholar 

  51. Ben Mrid R, El Omari R, Nhiri M (2016) Effect of nitrogen source and concentration on growth and activity of nitrogen assimilation enzymes in roots of a Moroccan sorghum ecotype. Plant 4(6):71. https://doi.org/10.11648/j.plant.20160406.14

    Article  Google Scholar 

  52. Ben Mrid R, El Omari R, El Mourabit N, Bouargalne Y, Nhiri M (2018) Changes in the antioxidant and glyoxalase enzyme activities in leaves of two Moroccan sorghum ecotypes with differential tolerance to nitrogen stress. Aust J Crop Sci 12(8):1280–1287

    Article  Google Scholar 

  53. Setién I, Vega-Mas I, Celestino N, Calleja-Cervantes ME, González-Murua C, Estavillo JM, González-Moro MB (2014) Root phosphoenolpyruvate carboxylase and NAD-malic enzymes activity increase the ammonium-assimilating capacity in tomato. J Plant Physiol 171(5):49–63. https://doi.org/10.1016/j.jplph.2013.10.021

    Article  Google Scholar 

  54. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46. https://doi.org/10.1016/j.envexpbot.2012.04.006

    Article  Google Scholar 

  55. Desoky ESM, Elrys AS, Mansour E, Eid RS, Selem E, Rady MM, Ali EF, Mersal GAM, Semida WM (2021) Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Sci Hortic 288:110340. https://doi.org/10.1016/j.scienta.2021.110340

    Article  Google Scholar 

  56. Farhat F et al (2022) The impact of bio-stimulants on Cd-stressed wheat (Triticum aestivum L.): insights into growth, chlorophyll fluorescence, Cd accumulation, and osmolyte regulation. Front Plant Sci 13:850567–850567. https://doi.org/10.3389/fpls.2022.850567

    Article  Google Scholar 

  57. Sharma A et al (2020) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 39(2):509–531. https://doi.org/10.1007/s00344-019-10018-x

    Article  Google Scholar 

  58. Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M (2021) Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf 211:111887. https://doi.org/10.1016/j.ecoenv.2020.111887

    Article  Google Scholar 

  59. Faraz A, Faizan M, Sami F, Siddiqui H, Hayat S (2020) Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. J Plant Growth Regul 39(2):641–655. https://doi.org/10.1007/s00344-019-10007-0

    Article  Google Scholar 

  60. An M, Wang H, Fan H, Ippolito JA, Meng C, Li Y, Wang K, Wei C (2019) Effects of modifiers on the growth, photosynthesis, and antioxidant enzymes of cotton under cadmium toxicity. J Plant Growth Regul 38(4):1196–1205. https://doi.org/10.1007/s00344-019-09924-x

    Article  Google Scholar 

  61. Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P (2019) Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere 225:627–638. https://doi.org/10.1016/j.chemosphere.2019.03.026

    Article  Google Scholar 

  62. Shah AA, Khan WU, Yasin NA, Akram W, Ahmad A, Abbas M, Ali A, Safdar MN (2020) Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of Brassica oleracea. Chemosphere 261:127728. https://doi.org/10.1016/j.chemosphere.2020.127728

    Article  Google Scholar 

  63. Zhao H, Guan J, Liang Q, Zhang X, Hu H, Zhang J (2021) Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci Rep 11(1):1–11. https://doi.org/10.1038/s41598-021-89322-0

    Article  Google Scholar 

  64. Morales M, Munné-Bosch S (2019) Malondialdehyde: facts and artifacts. Plant Physiol 180(3):1246–1250. https://doi.org/10.1104/pp.19.00405

    Article  Google Scholar 

  65. Tagnon MD, Simeon KO (2017) Aldehyde dehydrogenases may modulate signaling by lipid peroxidation-derived bioactive aldehydes. Plant Signal Behav 12(11):e1387707. https://doi.org/10.1080/15592324.2017.1387707

    Article  Google Scholar 

  66. Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants–role of plant growth regulators. Protoplasma 252(2):399–413. https://doi.org/10.1007/s00709-014-0710-4

    Article  Google Scholar 

  67. Fu SF, Wei JY, Chen HW, Liu YY, Lu HY, Chou JY (2015) Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav 10(8):e1048052. https://doi.org/10.1080/15592324.2015.1048052

    Article  Google Scholar 

  68. Fässler E, Evangelou MW, Robinson BH, Schulin R (2010) Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80(8):901–907. https://doi.org/10.1016/j.chemosphere.2010.04.077

    Article  Google Scholar 

  69. Wang R, Wang J, Zhao L, Yang S, Song Y (2015) Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. Biometals 28(1):123–132. https://doi.org/10.1007/s10534-014-9808-6

    Article  Google Scholar 

  70. Sun L, Wang J, Song K, Sun Y, Qin Q, Xue Y (2019) Transcriptome analysis of rice (Oryza sativa L) shoots responsive to cadmium stress. Sci. Rep., vol. 9, no 1, Art. no 1. https://doi.org/10.1038/s41598-019-46684-w.

  71. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019:5080843. https://doi.org/10.1155/2019/5080843

    Article  Google Scholar 

  72. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17(11):3782. https://doi.org/10.3390/ijerph17113782

    Article  Google Scholar 

  73. Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217(6):1915–1928. https://doi.org/10.1083/jcb.201708007

    Article  Google Scholar 

  74. Zhang L, Wu M, Teng Y, Jia S, Yu D, Wei T, Chen C, Song W (2019) Overexpression of the glutathione peroxidase 5 (RcGPX5) gene from rhodiola crenulata increases drought tolerance in Salvia miltiorrhiza. Front Plant Sci 9:1950. https://doi.org/10.3389/fpls.2018.01950

    Article  Google Scholar 

  75. Bhuyan MB, Parvin K, Mohsin SM, Mahmud JA, Hasanuzzaman M, Fujita M (2020) Modulation of cadmium tolerance in rice: insight into vanillic acid-induced upregulation of antioxidant defense and glyoxalase systems. Plants 9(2):188. https://doi.org/10.3390/plants9020188

    Article  Google Scholar 

  76. Alzahrani Y, Rady MM (2019) Compared to antioxidants and polyamines, the role of maize grain-derived organic biostimulants in improving cadmium tolerance in wheat plants. Ecotoxicol Environ Saf 182:109378. https://doi.org/10.1016/j.ecoenv.2019.109378

    Article  Google Scholar 

  77. Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212. https://doi.org/10.1016/j.plaphy.2013.05.032

    Article  Google Scholar 

  78. Latique S, Mrid RB, Kabach I, Yasri A, Kchikich A, Nhiri M, El Kaoua M, Douira A, Selmaoui K (2021) The effect of foliar application of Ulva rigida extract on the growth and biochemical parameters of wheat plants. In E3S Web of Conferences, vol. 234, p. 00103. https://doi.org/10.1051/e3sconf/202123400103

  79. Jan S, Noman A, Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020) 24-Epibrassinolide alleviates the injurious effects of Cr (VI) toxicity in tomato plants: Insights into growth, physio-biochemical attributes, antioxidant activity and regulation of Ascorbate–glutathione and Glyoxalase cycles. J Plant Growth Regul 39(4):1587–1604. https://doi.org/10.1007/s00344-020-10169-2

    Article  Google Scholar 

  80. Bernatoniene J, Kopustinskiene DM (2018) The role of catechins in cellular responses to oxidative stress. Molecules 23(4):965. https://doi.org/10.3390/molecules23040965

    Article  Google Scholar 

  81. Valares Masa C, Sosa Díaz T, AlíasGallego JC, Chaves Lobón N (2016) Quantitative variation of flavonoids and diterpenes in leaves and stems of Cistus ladanifer L at different ages. Molecules 21(3):275. https://doi.org/10.3390/molecules21030275

    Article  Google Scholar 

  82. Yang S, Zu Y, Li B, Bi Y, Jia L, He Y, Li Y (2019) Response and intraspecific differences in nitrogen metabolism of alfalfa (Medicago sativa L.) under cadmium stress. Chemosphere 220:69–76. https://doi.org/10.1016/j.chemosphere.2018.12.101

    Article  Google Scholar 

  83. Mobin M (2013) Effects of cadmium-induced oxidative stress on growth and nitrogen assimilation in Blackgram [Vigna mungo (L) Hepper]. J. Agric. Sci. Belgrade 58(1):31–39. https://doi.org/10.2298/JAS1301031M

    Article  Google Scholar 

  84. Tercé-Laforgue T, Bedu M, Dargel-Grafin C, Dubois F, Gibon Y, Restivo FM, Hirel B (2013) Resolving the role of plant glutamate dehydrogenase: II Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously. Plant Cell Physiol. 54(10):1635–1647. https://doi.org/10.1093/pcp/pct108

    Article  Google Scholar 

  85. Lan G, Jiao C, Wang G, Sun Y, Sun Y (2020) Effects of dopamine on growth, carbon metabolism, and nitrogen metabolism in cucumber under nitrate stress. Sci Hortic 260:108790. https://doi.org/10.1016/j.scienta.2019.108790

    Article  Google Scholar 

  86. Gouia H, Suzuki A, Brulfert J, Ghorbal MH (2003) Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. J Plant Physiol 160(4):367–376. https://doi.org/10.1078/0176-1617-00785

    Article  Google Scholar 

  87. Chaffei-Haouari C, Hajjaji-Nasraoui A, Carrayol E, Debouba M, Ghorbel MH, Gouia H (2011) Glutamate metabolism on Solanum lycopersicon grown under cadmium stress conditions. Acta Bot Gallica 158(2):147–159. https://doi.org/10.1080/12538078.2011.10516262

    Article  Google Scholar 

  88. Erdal S, Turk H (2016) Cysteine-induced upregulation of nitrogen metabolism-related genes and enzyme activities enhance tolerance of maize seedlings to cadmium stress. Environ Exp Bot 132:92–99. https://doi.org/10.1016/j.envexpbot.2016.08.014

    Article  Google Scholar 

  89. Wani AS, Tahir I, Ahmad SS, Dar RA, Nisar S (2017) Efficacy of 24-epibrassinolide in improving the nitrogen metabolism and antioxidant system in chickpea cultivars under cadmium and/or NaCl stress. Sci Hortic 225:48–55. https://doi.org/10.1016/j.scienta.2017.06.063

    Article  Google Scholar 

  90. Paul S, Guha T, Dey S, Paul S, Kundu R (2022) Amelioration of cadmium toxicity by enhancing nitrogen assimilation and photosynthetic activity by two different nitrogen supplements in rice (Oryza sativa L) cv. Lalat. Plant Stress 4:100082. https://doi.org/10.1016/j.stress.2022.100082

    Article  Google Scholar 

  91. de la Torre F, Cañas RA, Pascual MB, Avila C, Cánovas FM (2014) Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants. J Exp Bot 65(19):5527–5534. https://doi.org/10.1093/jxb/eru240

    Article  Google Scholar 

  92. Cánovas FM, Avila C, Canton FR, Canas RA, de la Torre F (2007) Ammonium assimilation and amino acid metabolism in conifers. J Exp Bot 58(9):2307–2318. https://doi.org/10.1093/jxb/erm051

    Article  Google Scholar 

  93. Gajewska E, Wielanek M, Bergier K, Skłodowska M (2009) Nickel-induced depression of nitrogen assimilation in wheat roots. Acta Physiol Plant 31(6):1291–1300. https://doi.org/10.1007/s11738-009-0370-8

    Article  Google Scholar 

  94. Liu L, Li J, Yue F, Yan X, Wang F, Bloszies S, Wang Y (2018) Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere 194:495–503. https://doi.org/10.1016/j.chemosphere.2017.12.025

    Article  Google Scholar 

  95. Kchikich A, Ben Mrid R, Kabach I, Nhiri M, El Omari R (2021) Arbuscular mycorrhizal fungi enhance sorghum plant growth under nitrogen-deficient conditions through activation of nitrogen and carbon metabolism enzymes. Int J Agric Biol 26:201–208. https://doi.org/10.17957/IJAB/15.1825

    Article  Google Scholar 

  96. Bouargalne Y, Ben Mrid R, El Omari R, Nhiri M (2018) Phosphoenolpyruvate carboxylase during maturation and germination sorghum seeds: enzyme activity and regulation. Russ J Plant Physiol 65(6):824–832. https://doi.org/10.1134/S1021443718060031

    Article  Google Scholar 

  97. Wang H, Zhao SC, Liu RL, Zhou W, Jin JY (2009) Changes of photosynthetic activities of maize (Zea mays L) seedlings in response to cadmium stress. Photosynthetica 47(2):277–283. https://doi.org/10.1007/s11099-009-0043-2

    Article  Google Scholar 

  98. Moussa HR, El-Gamal SM (2010) Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biol Plant 54(2):315–320. https://doi.org/10.1007/s10535-010-0054-7

    Article  Google Scholar 

  99. Guo H, Hong C, Chen X, Xu Y, Liu Y, Jiang D, Zheng B (2016) Different growth and physiological responses to cadmium of the three Miscanthus species. PLoS ONE 11(4):e0153475. https://doi.org/10.1371/journal.pone.0153475

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.N and Z.R; methodology, Z.R, N.N, S.E, A.E, Z.Z, A.K, and A.KR; writing—original draft preparation, Z.R.; writing—review and editing, A.KR and M.N; supervision, M.N and N.NHI. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Mohamed Nhiri.

Ethics declarations

Ethical approval

This declaration is not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roussi, Z., Kchikich, A., Nhhala, N. et al. Cistus monspeliensis extract as a prospective biostimulant in enhancing tolerance to cadmium in sorghum plant. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03542-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03542-6

Keywords

Navigation