Skip to main content

Advertisement

Log in

A comparative study on pyrolysis behaviors, product distribution, and kinetics of waste cotton stalk under different organic acidic solutions pretreatment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study aimed to disclose the effects of different organic acidic solutions’ (phenol, guaiacol, citric acid, and acetic acid) pretreatment on the pyrolysis characteristics of waste cotton stalk (CS). Firstly, the organic acidic solutions’ pretreatment could effectively improve the physicochemical properties of CS, showing a similar result to inorganic acid pretreatment. The thermogravimetric (TG) analysis indicated that pretreatment was helpful to inhibit the formation of char and enhance the escape of volatile matters. For pyrolysis products, pretreatment promoted a significant increase in the content of anhydrosugars, increasing by 12.48% at most (in Acetic Acid-CS). Besides, pretreatment inhibited the formation of ketones, with a maximum decrease of 11.72% (in Acetic Acid-CS). And the content of nitrogen-containing compounds was also reduced, which made the pyrolysis products more stable and environmentally friendly. The content of C6–C9 compounds was dramatically increased after pretreatment, conducive to upgrading to refined gasoline. Additionally, the apparent activation energy (Eα) was calculated by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods, and the results indicated that less energy was required for pyrolysis of cotton stalk pretreated with citric acid or acetic acid.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ansari KB, Kamal B, Beg S, Wakeel Khan MA, Khan MS, Al Mesfer MK, Danish M (2021) Recent developments in investigating reaction chemistry and transport effects in biomass fast pyrolysis: a review, Renewable and Sustainable Energy Reviews 150:111454. https://doi.org/10.1016/j.rser.2021.111454

  2. Hoang AT, Ong HC, Fattah IMR, Chong CT, Cheng CK, Sakthivel R, Ok YS (2021) Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability, Fuel Processing Technology 223:106997. https://doi.org/10.1016/j.fuproc.2021.106997

  3. Okolie JA, Epelle EI, Tabat ME, Orivri U, Amenaghawon AN, Okoye PU, Gunes B (2022) Waste biomass valorization for the production of biofuels and value-added products: a comprehensive review of thermochemical, biological and integrated processes. Process Saf Environ Prot 159:323–344. https://doi.org/10.1016/j.psep.2021.12.049

    Article  CAS  Google Scholar 

  4. Tian J, Zhang T, Talifu D, Abulizi A, Ji Y (2021) Porous carbon materials derived from waste cotton stalk with ultra-high surface area for high performance supercapacitors. Mater Res Bull 143:111457. https://doi.org/10.1016/j.materresbull.2021.111457

  5. Ghassemi-Golezani K, Farhangi-Abriz S (2022). Improving plant available water holding capacity of soil by solid and chemically modified biochars, Rhizosphere 21:100469. https://doi.org/10.1016/j.rhisph.2021.100469

  6. Dada TK, Sheehan M, Murugavelh S, Antunes E (2021) A review on catalytic pyrolysis for high-quality bio-oil production from biomass. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01391-3

    Article  Google Scholar 

  7. Fan Y, Tippayawong N, WeiG, Huang, ZhaoZ, Jiang L, Zheng A, Zhao Z , Li L (2020) Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification, Applied Energy 260:114315. https://doi.org/10.1016/j.apenergy.2019.114315

  8. N.Y. K, P.D. T, S. P, K. S, Y.K. R, S. Varjani, S. AdishKumar, G. Kumar, R.B. J (2022) Lignocellulosic biomass-based pyrolysis: a comprehensive review, Chemosphere 286(Pt 2):131824. https://doi.org/10.1016/j.chemosphere.2021.131824

  9. Singh N, Singhania RR, Nigam PS, Dong CD, Patel AK, Puri M (2022) Global status of lignocellulosic biorefinery: challenges and perspectives. Bioresour Technol 344(Pt B):126415. https://doi.org/10.1016/j.biortech.2021.126415

    Article  CAS  PubMed  Google Scholar 

  10. Yang H, Li S, Liu B, Chen Y, Xiao J, Dong Z, Gong M, Chen H (2020) Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy, Fuel 267:117302. https://doi.org/10.1016/j.fuel.2020.117302

  11. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126–1140. https://doi.org/10.1016/j.rser.2015.12.185

    Article  CAS  Google Scholar 

  12. Zhang B, Yang B, Wu S, Guo W, Zhang J Wu Z, Wang Z, Lim JC (2021). Effect of torrefaction pretreatment on the fast pyrolysis behavior of biomass: product distribution and kinetic analysis on spruce-pin-fir sawdust, Journal of Analytical and Applied Pyrolysis 158:105259. https://doi.org/10.1016/j.jaap.2021.105259

  13. Zhang X, Yu Z, Lu X, Ma X (2021) Catalytic co-pyrolysis of microwave pretreated chili straw and polypropylene to produce hydrocarbons-rich bio-oil. Bioresour Technol 319:124191. https://doi.org/10.1016/j.biortech.2020.124191

    Article  CAS  PubMed  Google Scholar 

  14. de Farias Silva CE, Meneghello D, de Souza Abud AK, Bertucco A (2020) Pretreatment of microalgal biomass to improve the enzymatic hydrolysis of carbohydrates by ultrasonication: yield vs energy consumption. J King Saud Univ Sci 32(1):606–613. https://doi.org/10.1016/j.jksus.2018.09.007

    Article  Google Scholar 

  15. Xu J, Zhang S, Shi Y, Zhang P, Huang D, Lin C, Wu Y (2021) Upgrading the wood vinegar prepared from the pyrolysis of biomass wastes by hydrothermal pretreatment. Energy. https://doi.org/10.1016/j.energy.2021.122631

    Article  Google Scholar 

  16. Khan SR, Zeeshan M, Masood A (2020) Enhancement of hydrocarbons production through co-pyrolysis of acid-treated biomass and waste tire in a fixed bed reactor. Waste Manag 106:21–31. https://doi.org/10.1016/j.wasman.2020.03.010

    Article  CAS  PubMed  Google Scholar 

  17. Kumar R, Strezov V, Weldekidan H, He J, Singh S, Kan T, Dastjerdi B (2020) Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels, Renewable and Sustainable Energy Reviews 123:109763. https://doi.org/10.1016/j.rser.2020.109763

  18. Xu F, Luo J, Jiang L, Zhao Z (2022) Improved production of levoglucosan and levoglucosenone from acid-impregnated cellulose via fast pyrolysis. Cellulose 29(3):1463–1472. https://doi.org/10.1007/s10570-021-04387-4

    Article  CAS  Google Scholar 

  19. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 101(12):4646–4655. https://doi.org/10.1016/j.biortech.2010.01.112

    Article  CAS  PubMed  Google Scholar 

  20. Dai L, Wang Y, Liu Y, He C, Ruan R, Yu Z, Jiang L, Zeng Z, Wu Q (2020) A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass. Sci Total Environ 749:142386. https://doi.org/10.1016/j.scitotenv.2020.142386

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Chen D, Cen K, Chen F, Ma Z, Zhou J, Li M (2020) Are the typical organic components in biomass pyrolyzed bio-oil available for leaching of alkali and alkaline earth metallic species (AAEMs) from biomass?, Fuel 260:116347. https://doi.org/10.1016/j.fuel.2019.116347

  22. Dai L, Wang Y, Liu Y, Ruan R (2020) Microwave-assisted pyrolysis of formic acid pretreated bamboo sawdust for bio-oil production. Environ Res 182:108988. https://doi.org/10.1016/j.envres.2019.108988

    Article  CAS  PubMed  Google Scholar 

  23. Cen K, Cao X, Chen D, Zhou J, Chen F, Li M (2020) Leaching of alkali and alkaline earth metallic species (AAEMs) with phenolic substances in bio-oil and its effect on pyrolysis characteristics of moso bamboo, Fuel Processing Technology 200:106332. https://doi.org/10.1016/j.fuproc.2019.106332

  24. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Ibeta and cellulose II. Carbohydr Polym 135:1–9. https://doi.org/10.1016/j.carbpol.2015.08.035

    Article  CAS  PubMed  Google Scholar 

  25. Hu L, Wei X-Y, Guo X-H, Lv H-P, Wang G-H (2021) Investigation on the kinetic behavior, thermodynamic and volatile products analysis of chili straw waste pyrolysis, Journal of Environmental Chemical Engineering 9(5):105859. https://doi.org/10.1016/j.jece.2021.105859

  26. Mortezaeikia V, Tavakoli O, Khodaparasti MS (2021) A review on kinetic study approach for pyrolysis of plastic wastes using thermogravimetric analysis. J Anal Appl Pyrolysis 160:105340. https://doi.org/10.1016/j.jaap.2021.105340

  27. Wei C, Yu Z, Zhang X, Ma X (2021) Co-combustion behavior of municipal solid waste and food waste anaerobic digestates: combustion performance, kinetics, optimization, and gaseous products. J Environ Chem Eng 9(5):106028. https://doi.org/10.1016/j.jece.2021.106028

  28. Javed MA (2020) Acid treatment effecting the physiochemical structure and thermal degradation of biomass. Renewable Energy 159:444–450. https://doi.org/10.1016/j.renene.2020.06.011

    Article  CAS  Google Scholar 

  29. Tang Z, Chen W, Hu J, Li S, Chen Y, Yang H, Chen H (2020) Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification. Bioresour Technol 311:123502. https://doi.org/10.1016/j.biortech.2020.123502

    Article  CAS  PubMed  Google Scholar 

  30. Saddawi A, Jones JM, Williams A (2012) Influence of alkali metals on the kinetics of the thermal decomposition of biomass. Fuel Process Technol 104:189–197. https://doi.org/10.1016/j.fuproc.2012.05.014

    Article  CAS  Google Scholar 

  31. Lu S, Ma T, Hu X, Zhao J, Liao X, Song Y, Hu X (2022) Facile extraction and characterization of cellulose nanocrystals from agricultural waste sugarcane straw. J Sci Food Agric 102(1):312–321. https://doi.org/10.1002/jsfa.11360

    Article  CAS  PubMed  Google Scholar 

  32. Ng LY, Wong TJ, Ng CY, Amelia CKM (2021) A review on cellulose nanocrystals production and characterization methods from Elaeis guineensis empty fruit bunches. Arab J Chem 14(9):103339. https://doi.org/10.1016/j.arabjc.2021.103339

  33. Zhou L, Jia Y, Nguyen T-H, Adesina AA, Liu Z (2013) Hydropyrolysis characteristics and kinetics of potassium-impregnated pine wood. Fuel Process Technol 116:149–157. https://doi.org/10.1016/j.fuproc.2013.05.005

    Article  CAS  Google Scholar 

  34. Ding Y, Huang B, Li K, Du W, Lu K, Zhang Y (2020) Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis, Energy 195:117010. https://doi.org/10.1016/j.energy.2020.117010

  35. Ma M, Bai Y, Wang J, Lv P, Song X, Su W, Yu G (2021) Study on the pyrolysis characteristics and kinetic mechanism of cow manure under different leaching solvents pretreatment. J Environ Manage 290:112580. https://doi.org/10.1016/j.jenvman.2021.112580

    Article  CAS  PubMed  Google Scholar 

  36. Lin X, Kong L, Cai H, Zhang Q, Bi D, Yi W (2019) Effects of alkali and alkaline earth metals on the co-pyrolysis of cellulose and high density polyethylene using TGA and Py-GC/MS. Fuel Process Technol 191:71–78. https://doi.org/10.1016/j.fuproc.2019.03.015

    Article  CAS  Google Scholar 

  37. Kim U-J, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95(5):778–781. https://doi.org/10.1016/j.polymdegradstab.2010.02.009

    Article  CAS  Google Scholar 

  38. Özsin G, Pütün AE, Pütün E (2019) Investigating the interactions between lignocellulosic biomass and synthetic polymers during co-pyrolysis by simultaneous thermal and spectroscopic methods. Biomass Conversion and Biorefinery 9(3):593–608. https://doi.org/10.1007/s13399-019-00390-9

    Article  CAS  Google Scholar 

  39. Zheng A, Li L, Tippayawong N, Huang Z, Zhao K, Wei G, Zhao Z, Li H (2020) Reducing emission of NOx and SOx precursors while enhancing char production from pyrolysis of sewage sludge by torrefaction pretreatment, Energy 192:116620. https://doi.org/10.1016/j.energy.2019.116620

  40. Fan H, Gu J, Wang Y, Yuan H, Chen Y, Luo B (2021) Effect of potassium on the pyrolysis of biomass components: pyrolysis behaviors, product distribution and kinetic characteristics. Waste Manag 121:255–264. https://doi.org/10.1016/j.wasman.2020.12.023

    Article  CAS  PubMed  Google Scholar 

  41. Alayont Ş, Kayan DB, Durak H, Alayont EK, Genel S (2022). The role of acidic, alkaline and hydrothermal pretreatment on pyrolysis of wild mustard (Sinapis arvensis) on the properties of bio-oil and bio-char, Bioresource Technology Reports 17:100980. https://doi.org/10.1016/j.biteb.2022.100980

  42. Liu S, Zhao A, He Z, Li Y, Bi D, Gao X (2022). Effects of temperature and urea concentration on nitrogen-rich pyrolysis: pyrolysis behavior and product distribution in bio-oil, Energy 239:122443. https://doi.org/10.1016/j.energy.2021.122443

  43. Khan SR, Masood A, Zeeshan M, Qaisar S (2021) The influence of dual-catalyst bed system of zeolitic and metal oxide catalysts on the production of valuable hydrocarbons during co-pyrolysis of rice straw and waste tire. Biomass Conversion Biorefinery. https://doi.org/10.1007/s13399-021-02052-1

    Article  Google Scholar 

  44. Itabaiana Junior I, AvelardoNascimento M, DeSouza ROMA, Dufour A, Wojcieszak R (2020) Levoglucosan: a promising platform molecule? Green Chemistry 22(18):5859–5880. https://doi.org/10.1039/d0gc01490g

    Article  CAS  Google Scholar 

  45. Zhang J, Li C, Yuan H, Chen Y (2022) Enhancement of aromatics production via cellulose fast pyrolysis over Ru modified hierarchical zeolites. Renewable Energy 184:280–290. https://doi.org/10.1016/j.renene.2021.11.103

    Article  CAS  Google Scholar 

  46. Aysu T, Durak H (2015) Catalytic pyrolysis of liquorice (Glycyrrhiza glabra L.) in a fixed-bed reactor: effects of pyrolysis parameters on product yields and character. J Anal Appl Pyrolysis 111:156–172. https://doi.org/10.1016/j.jaap.2014.11.017

    Article  CAS  Google Scholar 

  47. Leng E, Costa M, Gong X, Zheng A, Liu S, Xu M (2019) Effects of KCl and CaCl2 on the evolution of anhydro sugars in reaction intermediates during cellulose fast pyrolysis. Fuel 251:307–315. https://doi.org/10.1016/j.fuel.2019.04.006

    Article  CAS  Google Scholar 

  48. Tran QK, Vo TA, Ly HV, Kwon B, Kim KH, Kim S-S, Kim J (2022) Pyrolysis kinetics and product distribution of α-cellulose: effect of potassium and calcium impregnation. Renewable Energy 181:329–340. https://doi.org/10.1016/j.renene.2021.08.098

    Article  CAS  Google Scholar 

  49. Balasundram V, Zaman KK, Ibrahim N, Kasmani RM, Isha R, Hamid MKA, Hasbullah H (2020) Optimizing the catalytic performance of Ni-Ce/HZSM-5 catalyst for enriched C6–C8 hydrocarbons in pyrolysis oil via response surface methodology. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00873-0

    Article  Google Scholar 

  50. Jagtap A, Kalbande SR (2022) Investigation on pyrolysis kinetics and thermodynamic parameters of soybean straw: a comparative study using model-free methods. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02228-9

    Article  Google Scholar 

  51. Balogun AO, Lasode OA, McDonald AG (2014) Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak). Bioresour Technol 156:57–62. https://doi.org/10.1016/j.biortech.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  52. Singh S, Patil T, Tekade SP, Gawande MB, Sawarkar AN (2021) Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis. Sci Total Environ 783:147004. https://doi.org/10.1016/j.scitotenv.2021.147004

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Pattanayak S, Hauchhum L, Loha C, Sailo L, Saha D (2022) Thermal performance and synergetic behaviour of co-pyrolysis of North East Indian bamboo biomass with coal using thermogravimetric analysis. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02196-0

    Article  Google Scholar 

  54. Mallick D, Poddar MK, Mahanta P, Moholkar VS (2018) Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Bioresour Technol 261:294–305. https://doi.org/10.1016/j.biortech.2018.04.011

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (2022A1515011653), the Key Technologies Research and Development Program of Guangzhou (202206010122), and the Key Project (Natural Science) of Guangdong High Education Institutes (2019KZDXM068).

Author information

Authors and Affiliations

Authors

Contributions

Yanhui Bin, investigation, methodology, and writing — original draft. Zhaosheng Yu, conceptualization, funding acquisition, supervision, and writing — review and editing. Yaqi Zhang, investigation and methodology and writing — review and editing. Xiaoqian Ma, funding acquisition, resources, and supervision.

Corresponding author

Correspondence to Zhaosheng Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.05 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin, Y., Yu, Z., Zhang, Y. et al. A comparative study on pyrolysis behaviors, product distribution, and kinetics of waste cotton stalk under different organic acidic solutions pretreatment. Biomass Conv. Bioref. 14, 8625–8637 (2024). https://doi.org/10.1007/s13399-022-02873-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02873-8

Keywords

Navigation