Skip to main content

Advertisement

Log in

A review on catalytic pyrolysis for high-quality bio-oil production from biomass

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biomass is a renewable source and potentially sustainable fossil fuel replacement due to its availability, lower processing cost, high conversion, and lower life cycle carbon emissions. Pyrolysis can be used to convert biomass into bio-oil, but the quality of bio-oil is usually poor exhibiting high viscosity, thermal instability, and corrosiveness. This review article is focused on the application of catalytic pyrolysis towards obtaining high-quality bio-oil and advanced techniques for bio-oil characterisation. Structural arrangement (i.e., mesoporous, microporous), number of acid sites (Lewis and Brønsted acid sites), and amount of metal loading play a key role on deoxygenation reactions and selective production of aromatic hydrocarbons. Hierarchical zeolites doped with noble metals favour hydrogenation of C▬O or C〓O and reduce coke deposition in the production of polycyclic aromatics. Overall reaction mechanisms, aromatic yield and selectivity, the effect of Si/Al ratio, and process challenges of metal loaded zeolites are summarized. The advantages and disadvantages of different types of advanced analytical techniques for bio-oil characterisation are also discussed. The results showed that two-dimensional gas chromatography (2D GC) technique can identify 70% of chromatograph from bio-oil analysis. However, there is need to combine analytical techniques to accurately quantify bio-oil components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2):87–102

    Article  Google Scholar 

  2. Asadullah M et al (2013) Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell. Biomass Bioenergy 59:316–324

    Article  Google Scholar 

  3. Kang Q et al (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J 2014:298153

    Article  Google Scholar 

  4. Kobayashi N, Fan L-S (2011) Biomass direct chemical looping process: a perspective. Biomass Bioenergy 35(3):1252–1262

    Article  Google Scholar 

  5. Panwar NL, Kothari R, Tyagi VV (2012) Thermo chemical conversion of biomass—eco friendly energy routes. Renew Sust Energ Rev 16(4):1801–1816

    Article  Google Scholar 

  6. Torres W, Pansare SS, Goodwin JG (2007) Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catal Rev 49(4):407–456

    Article  Google Scholar 

  7. Morrin S et al (2012) Two stage fluid bed-plasma gasification process for solid waste valorisation: technical review and preliminary thermodynamic modelling of sulphur emissions. Waste Manag 32(4):676–684

    Article  Google Scholar 

  8. Antunes E et al (2017) Biochar produced from biosolids using a single-mode microwave: characterisation and its potential for phosphorus removal. J Environ Manag 196:119–126

    Article  Google Scholar 

  9. Di Blasi C et al (2001) Pyrolytic behavior and products of some wood varieties. Combust Flame 124(1):165–177

    Article  Google Scholar 

  10. Mythili R et al (2013) Characterization of bioresidues for biooil production through pyrolysis. Bioresour Technol 138:71–78

    Article  Google Scholar 

  11. Laird DA et al (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3(5):547–562

    Article  Google Scholar 

  12. Chaiwong K et al (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy 56:600–606

    Article  Google Scholar 

  13. Alvarez J et al (2014) Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 128:162–169

    Article  Google Scholar 

  14. Iliopoulou EF, Triantafyllidis KS, Lappas AA (2019) Overview of catalytic upgrading of biomass pyrolysis vapors toward the production of fuels and high-value chemicals. Energy Environ 8(1):e322

    Google Scholar 

  15. Wang K, Johnston PA, Brown RC (2014) Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system. Bioresour Technol 173:124–131

    Article  Google Scholar 

  16. Stephanidis S et al (2011) Catalytic upgrading of lignocellulosic biomass pyrolysis vapours: effect of hydrothermal pre-treatment of biomass. Catal Today 167(1):37–45

    Article  Google Scholar 

  17. Stefanidis S et al (2011) In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor. Bioresour Technol 102(17):8261–8267

    Article  Google Scholar 

  18. van Donk S et al (2003) Generation, characterization, and impact of mesopores in zeolite catalysts. Catal Rev 45(2):297–319

    Article  Google Scholar 

  19. Deng Y et al (2013) Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem Soc Rev 42(9):4054–4070

    Article  Google Scholar 

  20. Li W et al (2013) Ordered mesoporous materials based on interfacial assembly and engineering. Adv Mater 25(37):5129–5152

    Article  Google Scholar 

  21. Guo X et al (2009) Analysis of coke precursor on catalyst and study on regeneration of catalyst in upgrading of bio-oil. Biomass Bioenergy 33(10):1469–1473

    Article  Google Scholar 

  22. Shi Y et al (2017) Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts. Catal Sci Technol 7(12):2385–2415

    Article  Google Scholar 

  23. Yang Y et al (2016) Ce-promoted Ni/SBA-15 catalysts for anisole hydrotreating under mild conditions. Appl Catal B Environ 197:206–213

    Article  Google Scholar 

  24. Linares N et al (2011) Incorporation of chemical functionalities in the framework of mesoporous silica. Chem Commun 47(32):9024–9035

    Article  Google Scholar 

  25. Nava R et al (2009) Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Appl Catal B Environ 92(1):154–167

    Article  Google Scholar 

  26. Han T et al (2019) Catalytic pyrolysis of lignin using low-cost materials with different acidities and textural properties as catalysts. Chem Eng J 373:846–856

    Article  Google Scholar 

  27. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875

    Article  Google Scholar 

  28. Tsai W, Lee M, Chang Y (2006) Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrolysis 76(1-2):230–237

    Article  Google Scholar 

  29. Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716

    Article  Google Scholar 

  30. Imam T, Capareda S (2012) Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J Anal Appl Pyrolysis 93:170–177

    Article  Google Scholar 

  31. Chang S et al (2013) Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor. Bioresour Technol 138:321–328

    Article  Google Scholar 

  32. Abdullah N, Gerhauser H (2008) Bio-oil derived from empty fruit bunches. Fuel 87(12):2606–2613

    Article  Google Scholar 

  33. Piskorz J et al (1988) Liquid products from the fast pyrolysis of wood and cellulose. In: Research in thermochemical biomass conversion. Springer, p 557–571

  34. Isahak WNRW et al (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sust Energ Rev 16(8):5910–5923

    Article  Google Scholar 

  35. Braga RM et al (2014) Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim 115(2):1915–1920

    Article  Google Scholar 

  36. Shi X, Wang J (2014) A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components. Bioresour Technol 170:262–269

    Article  Google Scholar 

  37. Mullen CA, Boateng AA (2008) Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy Fuel 22(3):2104–2109. https://doi.org/10.1021/ef700776w

  38. Prasad S, Singh A, Joshi H (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50(1):1–39

    Article  Google Scholar 

  39. Stefanidis SD et al (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150

    Article  Google Scholar 

  40. Zhang L et al (2018) Catalytic pyrolysis of biomass and polymer wastes. Catalysts 8(12):659

    Article  Google Scholar 

  41. Tsai W, Lee M, Chang Y (2007) Fast pyrolysis of rice husk: product yields and compositions. Bioresour Technol 98(1):22–28

    Article  Google Scholar 

  42. Torri C et al (2010) Comparative analysis of pyrolysate from herbaceous and woody energy crops by Py-GC with atomic emission and mass spectrometric detection. J Anal Appl Pyrolysis 88(2):175–180

    Article  Google Scholar 

  43. Zanzi R, Sjöström K, Björnbom E (2002) Rapid pyrolysis of agricultural residues at high temperature. Biomass Bioenergy 23(5):357–366

    Article  Google Scholar 

  44. Chen Z et al (2015) Pyrolysis behaviors and kinetic studies on Eucalyptus residues using thermogravimetric analysis. Energy Convers Manag 105:251–259

    Article  Google Scholar 

  45. Elliott DC et al (2009) Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Environ Prog Sustain Energy 28(3):441–449

    Article  Google Scholar 

  46. Şensöz S, Can M (2002) Pyrolysis of pine (Pinus brutia Ten.) chips: 1. Effect of pyrolysis temperature and heating rate on the product yields. Energy Sources 24(4):347–355

    Article  Google Scholar 

  47. Lyu G, Wu S, Zhang H (2015) Estimation and comparison of bio-oil components from different pyrolysis conditions. Front Energy Res 3:28

    Article  Google Scholar 

  48. Boateng AA et al (2007) Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production. Ind Eng Chem Res 46(7):1891–1897

    Article  Google Scholar 

  49. Bartoli M et al (2016) Production of bio-oils and bio-char from Arundo donax through microwave assisted pyrolysis in a multimode batch reactor. J Anal Appl Pyrolysis 122:479–489

    Article  Google Scholar 

  50. Chen D, Zhou J, Zhang Q (2014) Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresour Technol 169:313–319

    Article  Google Scholar 

  51. Li LIN, Zhang H (2005) Production and characterization of pyrolysis oil from herbaceous biomass (Achnatherum Splendens). Energy Sources 27(4):319–326

    Article  Google Scholar 

  52. Sahoo D et al (2019) Value-addition of water hyacinth and para grass through pyrolysis and hydrothermal liquefaction. Carbon Resour Conver 2(3):233–241

    Article  Google Scholar 

  53. Kojima Y et al (2015) Pyrolysis characteristic of kenaf studied with separated tissues, alkali pulp, and alkali lignin. Biofuel Res J 8:317–323

    Article  Google Scholar 

  54. Cao J-P et al (2011) Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste. Bioresour Technol 102(2):2009–2015

    Article  Google Scholar 

  55. Heo HS et al (2010) Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresour Technol 101(1):S91–S96

    Article  Google Scholar 

  56. Weldekidan H et al (2019) Energy conversion efficiency of pyrolysis of chicken litter and rice husk biomass. Energy Fuel 33(7):6509–6514

    Article  Google Scholar 

  57. Setter C et al (2020) Energy quality of pellets produced from coffee residue: characterization of the products obtained via slow pyrolysis. Ind Crop Prod 154:112731

    Article  Google Scholar 

  58. Luo Z et al (2004) Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenergy 26(5):455–462

    Article  Google Scholar 

  59. Adamczyk M, Sajdak M (2018) Pyrolysis behaviours of microalgae Nannochloropsis gaditana. Waste Biomass Valoriz 9(11):2221–2235

    Article  Google Scholar 

  60. Yang W et al (2014) Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts. Energy Convers Manag 87:938–945

    Article  Google Scholar 

  61. Alper K, Tekin K, Karagöz S (2015) Pyrolysis of agricultural residues for bio-oil production. Clean Techn Environ Policy 17(1):211–223

    Article  Google Scholar 

  62. Hameed Z et al (2021) Gasification of municipal solid waste blends with biomass for energy production and resources recovery: current status, hybrid technologies and innovative prospects. Renew Sust Energ Rev 136:110375

    Article  Google Scholar 

  63. Zhang Q, Yang Z, Wu W (2008) Role of crop residue management in sustainable agricultural development in the North China Plain. J Sustain Agric 32(1):137–148

    Article  Google Scholar 

  64. Torres-Mayanga PC et al (2019) Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: a review. Biomass Bioenergy 130:105397

    Article  Google Scholar 

  65. Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51(5):969–982

    Article  Google Scholar 

  66. Bridgwater A (2001) Thermal conversion of biomass and waste: the status. Bio-Energy Research Group, Aston University, Birmingham

    Book  Google Scholar 

  67. Effendi A, Gerhauser H, Bridgwater AV (2008) Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew Sust Energ Rev 12(8):2092–2116

    Article  Google Scholar 

  68. Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79(3):277–299

    Article  Google Scholar 

  69. Jenkins B et al (1998) Combustion properties of biomass. Fuel Process Technol 54(1-3):17–46

    Article  Google Scholar 

  70. Sikarwar VS et al (2017) Progress in biofuel production from gasification. Prog Energy Combust Sci 61:189–248

    Article  Google Scholar 

  71. Damartzis T, Zabaniotou A (2011) Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review. Renew Sust Energ Rev 15(1):366–378

    Article  Google Scholar 

  72. Gopirajan PV, Gopinath KP, Sivaranjani G, Arun J (2021) Optimization of hydrothermal liquefaction process through machine learning approach: process conditions and oil yield. Biomass Conv Bioref 1–10. https://doi.org/10.1007/s13399-020-01233-8

  73. Barreiro DL et al (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53:113–127

    Article  Google Scholar 

  74. Ruiz JA et al (2013) Biomass gasification for electricity generation: review of current technology barriers. Renew Sust Energ Rev 18:174–183

    Article  Google Scholar 

  75. Franco C et al (2003) The study of reactions influencing the biomass steam gasification process☆. Fuel 82(7):835–842

    Article  Google Scholar 

  76. Chan YH et al (2019) An overview of biomass thermochemical conversion technologies in Malaysia. Sci Total Environ 680:105–123

    Article  Google Scholar 

  77. Jiang X et al (2014) Investigation into advantage of pyrolysis over combustion of sewage sludge in PCDD/Fs control. Fresenius Environ Bull 23(2a):550–557

    Google Scholar 

  78. Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608

    Article  Google Scholar 

  79. McGrath TE, Chan WG, Hajaligol MR (2003) Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J Anal Appl Pyrolysis 66(1-2):51–70

    Article  Google Scholar 

  80. Van de Velden M et al (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy 35(1):232–242

    Article  Google Scholar 

  81. Collard F-X et al (2012) Influence of impregnated metal on the pyrolysis conversion of biomass constituents. J Anal Appl Pyrolysis 95:213–226

    Article  Google Scholar 

  82. Garcia-Perez M et al (2007) Characterization of bio-oils in chemical families. Biomass Bioenergy 31(4):222–242

    Article  Google Scholar 

  83. López MB et al (2002) Composition of gases released during olive stones pyrolysis. J Anal Appl Pyrolysis 65(2):313–322

    Article  Google Scholar 

  84. Basu P (2010) Biomass gasification and pyrolysis: practical design and theory. Academic press, Cambridge

    Google Scholar 

  85. Guedes RE, Luna AS, Torres AR (2018) Operating parameters for bio-oil production in biomass pyrolysis: A review. J Anal Appl Pyrolysis 129:134–149

    Article  Google Scholar 

  86. Goyal H, Seal D, Saxena R (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energ Rev 12(2):504–517

    Article  Google Scholar 

  87. Zhang Q, Wang T, Wu V, Ma L, Xu Y (2010) Fractioned preparation of bio-oil by biomass vacuum pyrolysis. Int J Green Energy 7(3):263–272. https://doi.org/10.1080/15435071003795972

  88. Resende FLP (2016) Recent advances on fast hydropyrolysis of biomass. Catal Today 269:148–155

    Article  Google Scholar 

  89. Stamatov V, Honnery D, Soria J (2006) Combustion properties of slow pyrolysis bio-oil produced from indigenous Australian species. Renew Energy 31(13):2108–2121

    Article  Google Scholar 

  90. Hagner M et al (2020) Performance of liquids from slow pyrolysis and hydrothermal carbonization in plant protection. Waste Biomass Valoriz 11(3):1005–1016

    Article  Google Scholar 

  91. Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640

    Article  Google Scholar 

  92. Eke J, Onwudili JA, Bridgwater AV (2019) Influence of moisture contents on the fast pyrolysis of trommel fines in a bubbling fluidized bed reactor. Waste Biomass Valoriz 11(2):1–12

  93. Balat M et al (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Convers Manag 50(12):3147–3157

    Article  Google Scholar 

  94. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4(1):1–73

    Article  Google Scholar 

  95. Heo HS et al (2010) Fast pyrolysis of rice husk under different reaction conditions. J Ind Eng Chem 16(1):27–31

    Article  Google Scholar 

  96. Wei L et al (2006) Characteristics of fast pyrolysis of biomass in a free fall reactor. Fuel Process Technol 87(10):863–871

    Article  Google Scholar 

  97. Czernik S, Bridgwater A (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18(2):590–598

    Article  Google Scholar 

  98. Venderbosch R, Prins W (2010) Fast pyrolysis technology development. Biofuels Bioprod Biorefin 4(2):178–208

    Article  Google Scholar 

  99. Li Y, Khanal SK (2016) Bioenergy: principles and applications. John Wiley & Sons, Hoboken

    Google Scholar 

  100. Garcìa-Pérez M et al (2007) Vacuum pyrolysis of softwood and hardwood biomass: comparison between product yields and bio-oil properties. J Anal Appl Pyrolysis 78(1):104–116

    Article  Google Scholar 

  101. Singh NR et al (2010) Estimation of liquid fuel yields from biomass. Environ Sci Technol 44(13):5298–5305

    Article  Google Scholar 

  102. Galiasso R, González Y, Lucena M (2014) New inverted cyclone reactor for flash hydropyrolysis. Catal Today 220:186–197

    Article  Google Scholar 

  103. Akhtar J, Saidina Amin N (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sust Energ Rev 16(7):5101–5109

    Article  Google Scholar 

  104. Beis S, Onay Ö, Koçkar Ö (2002) Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions. Renew Energy 26(1):21–32

    Article  Google Scholar 

  105. Angın D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597

    Article  Google Scholar 

  106. Fu P et al (2011) Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues. Bioresour Technol 102(17):8211–8219

    Article  Google Scholar 

  107. Açıkalın K, Karaca F, Bolat E (2012) Pyrolysis of pistachio shell: effects of pyrolysis conditions and analysis of products. Fuel 95:169–177

    Article  Google Scholar 

  108. Sricharoenchaikul V, Atong D (2009) Thermal decomposition study on Jatropha curcas L. waste using TGA and fixed bed reactor. J Anal Appl Pyrolysis 85(1):155–162

    Article  Google Scholar 

  109. Lam SS et al (2012) Microwave-heated pyrolysis of waste automotive engine oil: influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil. Fuel 92(1):327–339

    Article  Google Scholar 

  110. Pütün AE, Apaydın E, Pütün E (2004) Rice straw as a bio-oil source via pyrolysis and steam pyrolysis. Energy 29(12-15):2171–2180

    Article  Google Scholar 

  111. Paenpong C, Pattiya A (2016) Effect of pyrolysis and moving-bed granular filter temperatures on the yield and properties of bio-oil from fast pyrolysis of biomass. J Anal Appl Pyrolysis 119:40–51

    Article  Google Scholar 

  112. Ji-lu Z (2007) Bio-oil from fast pyrolysis of rice husk: yields and related properties and improvement of the pyrolysis system. J Anal Appl Pyrolysis 80(1):30–35

    Article  Google Scholar 

  113. Bridgewater AV (2004) Biomass fast pyrolysis. Therm Sci 8(2):21–50

    Article  Google Scholar 

  114. Ateş F, Pütün E, Pütün A (2004) Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil. J Anal Appl Pyrolysis 71(2):779–790

    Article  Google Scholar 

  115. Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481

    Article  Google Scholar 

  116. Varma AK, Mondal P (2017) Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind Crop Prod 95:704–717

    Article  Google Scholar 

  117. Bhoi PR et al (2020) Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis. Renew Sust Energ Rev 121:109676

    Article  Google Scholar 

  118. Antunes E et al (2018) Microwave pyrolysis of sewage biosolids: dielectric properties, microwave susceptor role and its impact on biochar properties. J Anal Appl Pyrolysis 129:93–100

    Article  Google Scholar 

  119. Jahirul MI et al (2012) Biofuels production through biomass pyrolysis—a technological review. Energies 5(12):4952–5001

    Article  Google Scholar 

  120. Choi HS, Choi YS, Park HC (2012) Fast pyrolysis characteristics of lignocellulosic biomass with varying reaction conditions. Renew Energy 42:131–135

    Article  Google Scholar 

  121. Mohamed AR et al (2013) The effects of holding time and the sweeping nitrogen gas flowrates on the pyrolysis of EFB using a fixed-bed reactor. Proc Eng 53:185–191

    Article  Google Scholar 

  122. Strezov V, Moghtaderi B, Lucas J (2003) Thermal study of decomposition of selected biomass samples. J Therm Anal Calorim 72(3):1041–1048

    Article  Google Scholar 

  123. Debdoubi A et al (2006) The effect of heating rate on yields and compositions of oil products from esparto pyrolysis. Int J Energy Res 30(15):1243–1250

    Article  Google Scholar 

  124. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  Google Scholar 

  125. Vardon DR et al (2013) Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustain Chem Eng 1(10):1286–1294

    Article  Google Scholar 

  126. Jacobson K, Maheria KC, Kumar Dalai A (2013) Bio-oil valorization: a review. Renew Sust Energ Rev 23:91–106

    Article  Google Scholar 

  127. Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils state of the art for the end users. Energy Fuel 13(4):914–921

    Article  Google Scholar 

  128. Dickerson T, Soria J (2013) Catalytic fast pyrolysis: a review. Energies 6(1):514–538

    Article  Google Scholar 

  129. Kumar R, Strezov V (2021) Thermochemical production of bio-oil: a review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products. Renew Sust Energ Rev 135:110152

    Article  Google Scholar 

  130. Clauser NM et al (2021) Biomass waste as sustainable raw material for energy and fuels. Sustainability 13(2):794

    Article  Google Scholar 

  131. Demirbas A (2007) The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis. Fuel Process Technol 88(6):591–597

    Article  Google Scholar 

  132. Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol 88(5):523–531

    Article  Google Scholar 

  133. Boucher M, Chaala A, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 19(5):337–350

    Article  Google Scholar 

  134. Diebold JP (1999) A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. National Renewable Energy Lab, Golden

    Book  Google Scholar 

  135. Cai J et al (2016) Viscosity of aged bio-oils from fast pyrolysis of beech wood and Miscanthus: shear rate and temperature dependence. Energy Fuel 30(6):4999–5004

    Article  Google Scholar 

  136. Meng J et al (2015) Thermal and storage stability of bio-oil from pyrolysis of torrefied wood. Energy Fuel 29(8):5117–5126

    Article  Google Scholar 

  137. Zhang Q et al (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48(1):87–92

    Article  Google Scholar 

  138. Thangalazhy-Gopakumar S et al (2010) Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresour Technol 101(21):8389–8395

    Article  Google Scholar 

  139. Park Y-K et al (2012) Wild reed of Suncheon Bay: potential bio-energy source. Renew Energy 42:168–172

    Article  Google Scholar 

  140. Kim J-S (2015) Production, separation and applications of phenolic-rich bio-oil–a review. Bioresour Technol 178:90–98

    Article  Google Scholar 

  141. Wei Y et al (2014) Liquid–liquid extraction of biomass pyrolysis bio-oil. Energy Fuel 28(2):1207–1212

    Article  Google Scholar 

  142. Fini EH et al (2011) Chemical characterization of biobinder from swine manure: sustainable modifier for asphalt binder. J Mater Civ Eng 23(11):1506–1513

    Article  Google Scholar 

  143. Zhang S et al (2019) Liquefaction of biomass and upgrading of bio-oil: a review. Molecules 24(12):2250

    Article  Google Scholar 

  144. Mathimani T et al (2019) Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: process evaluation and knowledge gaps. J Clean Prod 208:1053–1064

    Article  Google Scholar 

  145. Shan Ahamed T et al (2021) Upgrading of bio-oil from thermochemical conversion of various biomass—mechanism, challenges and opportunities. Fuel 287:119329

    Article  Google Scholar 

  146. Gollakota ARK et al (2016) A review on the upgradation techniques of pyrolysis oil. Renew Sust Energ Rev 58:1543–1568

    Article  Google Scholar 

  147. Wang S et al (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86

    Article  Google Scholar 

  148. Aho A et al (2010) Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor. Fuel 89(8):1992–2000

    Article  Google Scholar 

  149. Foster AJ et al (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal A Gen 423-424:154–161

    Article  Google Scholar 

  150. Ruddy DA et al (2014) Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem 16(2):454–490

    Article  Google Scholar 

  151. Luo G, Resende FL (2016) In-situ and ex-situ upgrading of pyrolysis vapors from beetle-killed trees. Fuel 166:367–375

    Article  Google Scholar 

  152. Wan S, Wang Y (2014) A review on ex situ catalytic fast pyrolysis of biomass. Front Chem Sci Eng 8(3):280–294

    Article  Google Scholar 

  153. Gamliel DP et al (2015) Investigation of in situ and ex situ catalytic pyrolysis of miscanthus × giganteus using a PyGC–MS microsystem and comparison with a bench-scale spouted-bed reactor. Bioresour Technol 191:187–196

    Article  Google Scholar 

  154. Stefanidis SD et al (2016) Catalyst hydrothermal deactivation and metal contamination during the in situ catalytic pyrolysis of biomass. Catal Sci Technol 6(8):2807–2819

    Article  Google Scholar 

  155. Shirazi Y, Viamajala S, Varanasi S (2020) In situ and ex situ catalytic pyrolysis of microalgae and integration with pyrolytic fractionation. Front Chem 8:786

    Article  Google Scholar 

  156. Hemberger P et al (2017) Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis. Nat Commun 8:15946

    Article  Google Scholar 

  157. Rahman MM, Liu R, Cai J (2018) Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil—a review. Fuel Process Technol 180:32–46

    Article  Google Scholar 

  158. Adjaye J, Bakhshi N (1995) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part II: Comparative catalyst performance and reaction pathways. Fuel Process Technol 45(3):185–202

    Article  Google Scholar 

  159. Nie L et al (2014) Selective conversion of m-cresol to toluene over bimetallic Ni–Fe catalysts. J Mol Catal A Chem 388:47–55

    Article  Google Scholar 

  160. Shafaghat H, Rezaei PS, Daud WMAW (2016) Catalytic hydrodeoxygenation of simulated phenolic bio-oil to cycloalkanes and aromatic hydrocarbons over bifunctional metal/acid catalysts of Ni/HBeta, Fe/HBeta and NiFe/HBeta. J Ind Eng Chem 35:268–276

    Article  Google Scholar 

  161. Yuan G, Keane MA (2007) Aqueous-phase hydrodechlorination of 2,4-dichlorophenol over Pd/Al2O3: reaction under controlled pH. Ind Eng Chem Res 46(3):705–715

    Article  Google Scholar 

  162. Mahata N, Vishwanathan V (2000) Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts. J Catal 196(2):262–270

    Article  Google Scholar 

  163. Patel M, Kumar A (2016) Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: a review. Renew Sust Energ Rev 58:1293–1307

    Article  MathSciNet  Google Scholar 

  164. Zhao C et al (2011) Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. J Catal 280(1):8–16

    Article  Google Scholar 

  165. Echeandia S et al (2010) Synergy effect in the HDO of phenol over Ni–W catalysts supported on active carbon: effect of tungsten precursors. Appl Catal B Environ 101(1):1–12

    Article  Google Scholar 

  166. Nishu et al (2020) A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: focus on structure. Fuel Process Technol 199:106301

    Article  Google Scholar 

  167. Mihalcik DJ, Mullen CA, Boateng AA (2011) Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J Anal Appl Pyrolysis 92(1):224–232

    Article  Google Scholar 

  168. French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol 91(1):25–32

    Article  Google Scholar 

  169. Zhang H et al (2009) Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol 100(3):1428–1434

    Article  Google Scholar 

  170. Valle B et al (2010) Selective production of aromatics by crude bio-oil valorization with a nickel-modified HZSM-5 zeolite catalyst. Energy Fuel 24(3):2060–2070

    Article  Google Scholar 

  171. Iliopoulou EF et al (2012) Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl Catal B Environ 127:281–290

    Article  Google Scholar 

  172. Kumar R et al (2019) Enhanced bio-oil deoxygenation activity by Cu/zeolite and Ni/zeolite catalysts in combined in-situ and ex-situ biomass pyrolysis. J Anal Appl Pyrolysis 140:148–160

    Article  Google Scholar 

  173. Sun L et al (2016) Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts. J Anal Appl Pyrolysis 121:342–346

    Article  Google Scholar 

  174. Zheng Y et al (2017) Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5. J Anal Appl Pyrolysis 126:169–179

    Article  Google Scholar 

  175. Razzaq M et al (2019) Investigating use of metal-modified HZSM-5 catalyst to upgrade liquid yield in co-pyrolysis of wheat straw and polystyrene. Fuel 257:116119

    Article  Google Scholar 

  176. Taylor MJ et al (2016) Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Appl Catal B Environ 180:580–585

    Article  Google Scholar 

  177. Li X et al (2019) Recent advances in aqueous-phase catalytic conversions of biomass platform chemicals over heterogeneous catalysts. Front Chem 7:948

    Article  Google Scholar 

  178. Hellinger M et al (2015) Catalytic hydrodeoxygenation of guaiacol over platinum supported on metal oxides and zeolites. Appl Catal A Gen 490:181–192

    Article  Google Scholar 

  179. Jin X et al (2013) Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals. ACS Nano 7(2):1309–1316

    Article  Google Scholar 

  180. Lup ANK et al (2017) A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds. J Ind Eng Chem 56:1–34

    Article  Google Scholar 

  181. Bulushev DA, Ross JR (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal Today 171(1):1–13

    Article  Google Scholar 

  182. Nilsen MH et al (2007) Investigation of the effect of metal sites in Me–Al-MCM-41 (Me=Fe, Cu or Zn) on the catalytic behavior during the pyrolysis of wooden based biomass. Microporous Mesoporous Mater 105(1):189–203

    Article  Google Scholar 

  183. Shen Y et al (2014) In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Appl Catal B Environ 152:140–151

    Article  Google Scholar 

  184. Guan G et al (2012) Catalytic steam reforming of biomass tar over iron- or nickel-based catalyst supported on calcined scallop shell. Appl Catal B Environ 115-116:159–168

    Article  Google Scholar 

  185. Hensley AJ et al (2014) Enhanced Fe2O3 reducibility via surface modification with Pd: characterizing the synergy within Pd/Fe catalysts for hydrodeoxygenation reactions. ACS Catal 4(10):3381–3392

    Article  Google Scholar 

  186. Zarnegar S (2018) A review on catalytic-pyrolysis of coal and biomass for value-added fuel and chemicals. Energy Sources Part A 40(12):1427–1433

    Article  Google Scholar 

  187. Busetto L et al (2011) Application of the Shvo catalyst in homogeneous hydrogenation of bio-oil obtained from pyrolysis of white poplar: New mild upgrading conditions. Fuel 90(3):1197–1207

    Article  Google Scholar 

  188. Kaewpengkrow P, Atong D, Sricharoenchaikul V (2017) Selective catalytic fast pyrolysis of Jatropha curcas residue with metal oxide impregnated activated carbon for upgrading bio-oil. Int J Hydrog Energy 42(29):18397–18409

    Article  Google Scholar 

  189. Yarulina I et al (2018) Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nat Catal 1(6):398–411

    Article  Google Scholar 

  190. Wang Z et al (2015) Direct, single-step synthesis of hierarchical zeolites without secondary templating. J Mater Chem A 3(3):1298–1305

    Article  Google Scholar 

  191. Li J et al (2014) Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal A Gen 470:115–122

    Article  Google Scholar 

  192. Ding K et al (2017) Effects of alkali-treated hierarchical HZSM-5 zeolites on the production of aromatic hydrocarbons from catalytic fast pyrolysis of waste cardboard. J Anal Appl Pyrolysis 125:153–161

    Article  Google Scholar 

  193. Puértolas B et al (2015) Porosity–acidity interplay in hierarchical ZSM-5 zeolites for pyrolysis oil valorization to aromatics. ChemSusChem 8(19):3283–3293

    Article  Google Scholar 

  194. Asadieraghi M, Wan Daud WMA (2015) In-situ catalytic upgrading of biomass pyrolysis vapor: Using a cascade system of various catalysts in a multi-zone fixed bed reactor. Energy Convers Manag 101:151–163

    Article  Google Scholar 

  195. Kantarelis E et al (2019) Engineering the catalytic properties of HZSM5 by cobalt modification and post-synthetic hierarchical porosity development. Top Catal 62(7):773–785

    Article  Google Scholar 

  196. Yue Y et al (2014) From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: A nanoscale depolymerization–reorganization approach. J Catal 319:200–210

    Article  Google Scholar 

  197. Cho K et al (2012) Zeolite synthesis using hierarchical structure-directing surfactants: retaining porous structure of initial synthesis gel and precursors. Chem Mater 24(14):2733–2738

    Article  Google Scholar 

  198. Antonakou E et al (2006) Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel 85(14):2202–2212

    Article  Google Scholar 

  199. Twaiq FA, Mohamed AR, Bhatia S (2003) Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios. Microporous Mesoporous Mater 64(1):95–107

    Article  Google Scholar 

  200. Liang J et al (2017) Heterogeneous catalysis in zeolites, mesoporous silica, and metal–organic frameworks. Adv Mater 29(30):1701139

    Article  Google Scholar 

  201. Jeon M-J et al (2013) Catalytic pyrolysis of biomass components over mesoporous catalysts using Py-GC/MS. Catal Today 204:170–178

    Article  Google Scholar 

  202. Lu Q et al (2010) Catalytic upgrading of biomass fast pyrolysis vapors with Pd/SBA-15 catalysts. Ind Eng Chem Res 49(6):2573–2580

    Article  Google Scholar 

  203. Du L et al (2013) A comparison of monomeric phenols produced from lignin by fast pyrolysis and hydrothermal conversions. Int J Chem React Eng 11(1):135–145

    Article  Google Scholar 

  204. Wang C et al (2021) Integrated harvest of phenolic monomers and hydrogen through catalytic pyrolysis of biomass over nanocellulose derived biochar catalyst. Bioresour Technol 320:124352

    Article  Google Scholar 

  205. Wang D et al (2010) Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis. J Anal Appl Pyrolysis 89(2):171–177

    Article  Google Scholar 

  206. Brunelli NA, Venkatasubbaiah K, Jones CW (2012) Cooperative catalysis with acid–base bifunctional mesoporous silica: impact of grafting and co-condensation synthesis methods on material structure and catalytic properties. Chem Mater 24(13):2433–2442

    Article  Google Scholar 

  207. Qiang L et al (2009) Analytical pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) of sawdust with Al/SBA-15 catalysts. J Anal Appl Pyrolysis 84(2):131–138

    Article  Google Scholar 

  208. Tang Y et al (2011) Enhancement of Pt catalytic activity in the hydrogenation of aldehydes. Appl Catal A Gen 406(1):81–88

    Article  MathSciNet  Google Scholar 

  209. Yin Y et al (2017) Modification of as synthesized SBA-15 with Pt nanoparticles: nanoconfinement effects give a boost for hydrogen storage at room temperature. Sci Rep 7(1):1–10

    MathSciNet  Google Scholar 

  210. Adam J et al (2005) Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 84(12-13):1494–1502

    Google Scholar 

  211. Kim H et al (2016) Catalytic copyrolysis of particle board and polypropylene over Al-MCM-48. Mater Res Bull 82:61–66

    Article  Google Scholar 

  212. Triantafyllidis KS et al (2007) Hydrothermally stable mesoporous aluminosilicates (MSU-S) assembled from zeolite seeds as catalysts for biomass pyrolysis. Microporous Mesoporous Mater 99(1-2):132–139

    Article  Google Scholar 

  213. Liu W-J et al (2013) Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste. Sci Rep 3:2419

    Article  Google Scholar 

  214. Tessarolo NS et al (2016) Characterization of thermal and catalytic pyrolysis bio-oils by high-resolution techniques: 1H NMR, GC×GC-TOFMS and FT-ICR MS. J Anal Appl Pyrolysis 117:257–267

    Article  Google Scholar 

  215. Staš M et al (2014) Overview of analytical methods used for chemical characterization of pyrolysis bio-oil. Energy Fuel 28(1):385–402

    Article  Google Scholar 

  216. Eschenbacher A et al (2020) Insights into the scalability of catalytic upgrading of biomass pyrolysis vapors using micro and bench-scale reactors. Sustainable Energy Fuels 4(7):3780–3796

    Article  Google Scholar 

  217. Naik S et al (2010) Supercritical CO2 fractionation of bio-oil produced from wheat–hemlock biomass. Bioresour Technol 101(19):7605–7613

    Article  Google Scholar 

  218. Ingram L et al (2008) Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils. Energy Fuel 22(1):614–625

    Article  MathSciNet  Google Scholar 

  219. Ren S et al (2016) Analysis of switchgrass-derived bio-oil and associated aqueous phase generated in a semi-pilot scale auger pyrolyzer. J Anal Appl Pyrolysis 119:97–103

    Article  Google Scholar 

  220. Bertero M, de la Puente G, Sedran U (2012) Fuels from bio-oils: bio-oil production from different residual sources, characterization and thermal conditioning. Fuel 95:263–271

    Article  Google Scholar 

  221. Barnés MC et al (2015) A new approach for bio-oil characterization based on gel permeation chromatography preparative fractionation. J Anal Appl Pyrolysis 113:444–453

    Article  Google Scholar 

  222. Sfetsas T et al (2011) Qualitative and quantitative analysis of pyrolysis oil by gas chromatography with flame ionization detection and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. J Chromatogr A 1218(21):3317–3325

    Article  Google Scholar 

  223. Auersvald M et al (2019) Quantitative study of straw bio-oil hydrodeoxygenation over a sulfided NiMo catalyst. ACS Sustain Chem Eng 7(7):7080–7093

    Article  Google Scholar 

  224. Lewis AJ et al (2015) Hydrogen production from switchgrass via an integrated pyrolysis–microbial electrolysis process. Bioresour Technol 195:231–241

    Article  Google Scholar 

  225. Hui-Peng L et al (2009) Effects of phenols on the stability of FCC diesel fuel. Pet Sci Technol 27(5):486–497

    Article  Google Scholar 

  226. Gellerstedt G et al (2008) Chemical structures present in biofuel obtained from lignin. Energy Fuel 22(6):4240–4244

    Article  Google Scholar 

  227. Joseph J et al (2016) Compositional changes to low water content bio-oils during aging: an NMR, GC/MS, and LC/MS study. Energy Fuel 30(6):4825–4840

    Article  Google Scholar 

  228. Tammekivi E et al (2019) Comparison of derivatization methods for the quantitative gas chromatographic analysis of oils. Anal Methods 11(28):3514–3522

    Article  Google Scholar 

  229. Moraes MSA et al (2012) Analysis of products from pyrolysis of Brazilian sugar cane straw. Fuel Process Technol 101:35–43

    Article  Google Scholar 

  230. Venkatramani C, Xu J, Phillips JB (1996) Separation orthogonality in temperature-programmed comprehensive two-dimensional gas chromatography. Anal Chem 68(9):1486–1492

    Article  Google Scholar 

  231. Murray JA (2012) Qualitative and quantitative approaches in comprehensive two-dimensional gas chromatography. J Chromatogr A 1261:58–68

    Article  Google Scholar 

  232. Negahdar L et al (2016) Characterization and comparison of fast pyrolysis bio-oils from pinewood, rapeseed cake, and wheat straw using 13C NMR and comprehensive GC × GC. ACS Sustain Chem Eng 4(9):4974–4985

    Article  Google Scholar 

  233. Mattsson C et al (2016) Using 2D NMR to characterize the structure of the low and high molecular weight fractions of bio-oil obtained from LignoBoost™ kraft lignin depolymerized in subcritical water. Biomass Bioenergy 95:364–377

    Article  Google Scholar 

  234. Mullen CA, Strahan GD, Boateng AA (2009) Characterization of various fast-pyrolysis bio-oils by NMR spectroscopy. Energy Fuel 23(5):2707–2718

    Article  Google Scholar 

  235. Hao N et al (2016) Review of NMR characterization of pyrolysis oils. Energy Fuel 30(9):6863–6880

    Article  Google Scholar 

  236. Bharti SK, Roy R (2012) Quantitative 1H NMR spectroscopy. TrAC Trends Anal Chem 35:5–26

    Article  Google Scholar 

  237. Kanaujia PK et al (2014) Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. J Anal Appl Pyrolysis 105:55–74

    Article  Google Scholar 

  238. David K et al (2010) 31P-NMR analysis of bio-oils obtained from the pyrolysis of biomass. Biofuels 1(6):839–845

    Article  Google Scholar 

  239. Joseph J et al (2010) Chemical shifts and lifetimes for nuclear magnetic resonance (NMR) analysis of biofuels. Energy Fuel 24(9):5153–5162

    Article  Google Scholar 

  240. Christensen ED et al (2011) Analysis of oxygenated compounds in hydrotreated biomass fast pyrolysis oil distillate fractions. Energy Fuel 25(11):5462–5471

    Article  Google Scholar 

  241. Wang Y et al (2020) Analytical strategies for chemical characterization of bio-oil. J Sep Sci 43(1):360–371

    Article  Google Scholar 

  242. Schnitzer MI et al (2007) The conversion of chicken manure to biooil by fast pyrolysis I. Analyses of chicken manure, biooils and char by 13C and 1H NMR and FTIR spectrophotometry. J Environ Sci Health B 42(1):71–77

    Article  Google Scholar 

  243. Jiang X, Ellis N, Zhong Z (2011) Fuel properties of bio-oil/bio-diesel mixture characterized by TG, FTIR and 1H NMR. Korean J Chem Eng 28(1):133–137

    Article  Google Scholar 

  244. Kanaujia PK et al (2013) Analytical approaches to characterizing pyrolysis oil from biomass. TrAC Trends Anal Chem 42:125–136

    Article  Google Scholar 

  245. Hu X et al (2020) Coke Formation during thermal treatment of bio-oil. Energy Fuel 34(7):7863–7914

    Article  Google Scholar 

  246. El-Sayed SA, Mostafa ME (2020) Thermal pyrolysis and kinetic parameter determination of mango leaves using common and new proposed parallel kinetic models. RSC Adv 10(31):18160–18179

    Article  Google Scholar 

  247. Mureddu M et al (2018) Air-and oxygen-blown characterization of coal and biomass by thermogravimetric analysis. Fuel 212:626–637

    Article  Google Scholar 

  248. Hu J et al (2019) Combustion behaviors of three bamboo residues: gas emission, kinetic, reaction mechanism and optimization patterns. J Clean Prod 235:549–561

    Article  Google Scholar 

  249. Müller-Hagedorn M, Bockhorn H (2007) Pyrolytic behaviour of different biomasses (angiosperms)(maize plants, straws, and wood) in low temperature pyrolysis. J Anal Appl Pyrolysis 79(1-2):136–146

    Article  Google Scholar 

  250. Branca C, Albano A, Di Blasi C (2005) Critical evaluation of global mechanisms of wood devolatilization. Thermochim Acta 429(2):133–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Antunes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dada, T.K., Sheehan, M., Murugavelh, S. et al. A review on catalytic pyrolysis for high-quality bio-oil production from biomass. Biomass Conv. Bioref. 13, 2595–2614 (2023). https://doi.org/10.1007/s13399-021-01391-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01391-3

Keywords

Navigation