Skip to main content

Advertisement

Log in

Temperature-programmed pyrolysis of sunflower seed husks: application of reaction models for the kinetic and thermodynamic calculation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This work aims to investigate the slow pyrolysis of sunflower seed residues using thermogravimetric tests carried out at five heating rates: 5, 10, 15, 20, and 25 K min−1. The kinetic triplet for global reaction, represented by activation energy (\({E}_{a}\)), Arrhenius pre-exponential factor (A), and reaction mechanism (\(f\left(\alpha \right))\), and the kinetic parameters for pseudo-components were determined. Thermodynamic activation parameters as enthalpy, Gibbs free energy, and entropy were calculated by using the transition state theory. The \({E}_{a}\) values determined by isoconversional methods varied between 79.11 and 162.57 kJ mol−1, and the master plots methodology indicated the reaction mechanism of sunflower seed residues as the three-dimensional Jader equation, resulting in global parameters of 102.51 kJ mol−1 and 8.96 × 105 s−1 for \({E}_{a}\) and A, respectively. The presence of three pseudo-components (hemicelluloses, cellulose, and lignin) was considered for the modeling of independent parallel reactions, which resulted in \({E}_{a}\) values ranging from 72.4 to 170.2 kJ mol−1 and the A values ranging from 1.31×104 mol−2 s−1 to 1.21×1013 mol−1 s−1, with reaction orders varying between 1 and 3. The values of thermodynamic parameters indicated that the pyrolysis of sunflower residues tends to remain continuous once the necessary energy is supplied and that the activated state presented a higher degree of organization than the reactants. This present work is the first one to investigate the kinetic triplet and the independent parallel reaction model for sunflower residue pyrolysis. The results were useful for biomass management, indicating the kinetic and thermodynamic values for pyrolysis optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available on request.

Code availability

Not applicable

References

  1. Hu M, Chen Z, Wang S et al (2016) Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method. Energy Convers Manage 118:1–11

    Article  Google Scholar 

  2. Badshah SL, Shah Z, Alves JLF et al (2021) Pyrolysis of the freshwater macroalgae Spirogyra crassa: evaluating its bioenergy potential using kinetic triplet and thermodynamic parameters. Renewable Energy 179:1169–1178. https://doi.org/10.1016/j.renene.2021.07.105

    Article  Google Scholar 

  3. Aron NSM, Khoo KS, Chew KW et al (2020) Sustainability of the four generations of biofuels – a review. Int J Energy Res 44:9266–9282. https://doi.org/10.1002/er.5557

    Article  Google Scholar 

  4. Food and Agriculture Organization of the United Nations (2020) http://www.fao.org/faostat/en/#data/QC

  5. United States Department of Agriculture (2019) United States Department of Agriculture. Foreign Agricultural Service

  6. Ren X, Chen J, Li G et al (2018) Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model. Biores Technol 261:403–411. https://doi.org/10.1016/j.biortech.2018.04.047

    Article  Google Scholar 

  7. Brazil OAV, Vilanova-Neta JL, Silva NO et al (2019) Integral use of lignocellulosic residues from different sunflower accessions : analysis of the production potential for biofuels. J Clean Prod 221:430–438. https://doi.org/10.1016/j.jclepro.2019.02.274

    Article  Google Scholar 

  8. Klass DL (1998) Biomass for renewable energy. fuels. and chemicals., 1st ed. Academic Press

  9. Chin-Pampillo JS, Alfaro-Vargas A, Rojas R et al (2021) Widespread tropical agrowastes as novel feedstocks for biochar production: characterization and priority environmental uses. Biomass Conversion and Biorefinery 11:1775–1785. https://doi.org/10.1007/s13399-020-00714-0/Published

    Article  Google Scholar 

  10. Shalini SS, Raghavan V (2021) Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions-a review. Biomass Conversion and Biorefinery 11:2247–2267. https://doi.org/10.1007/s13399-020-00604-5/Published

    Article  Google Scholar 

  11. Usevičiūtė L, Baltrėnaitė-Gedienė E (2021) Dependence of pyrolysis temperature and lignocellulosic physical-chemical properties of biochar on its wettability. Biomass Conversion and Biorefinery 11:2775–2793. https://doi.org/10.1007/s13399-020-00711-3/Published

    Article  Google Scholar 

  12. Cardoso CR, Ataíde CH (2013) Analytical pyrolysis of tobacco residue: effect of temperature and inorganic additives. J Anal Appl Pyrol 99:49–57

    Article  Google Scholar 

  13. White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol 91:1–33

    Article  Google Scholar 

  14. Hilten R, Vandenbrink JP, Paterson AH et al (2014) Linking isoconversional pyrolysis kinetics to compositional characteristics for multiple Sorghum bicolor genotypes. Thermochim Acta 577:46–52. https://doi.org/10.1016/j.tca.2013.12.012

    Article  Google Scholar 

  15. Cao H, Xin Y, Wang D, Yuan Q (2014) Pyrolysis characteristics of cattle manures using a discrete distributed activation energy model. Biores Technol 172:219–225. https://doi.org/10.1016/j.biortech.2014.09.049

    Article  Google Scholar 

  16. Várhegyi G, Czégény Z, Jakab E et al (2009) Tobacco pyrolysis. Kinetic evaluation of thermogravimetric – mass spectrometric experiments. J Anal Appl Pyrol 86:310–322. https://doi.org/10.1016/j.jaap.2009.08.008

    Article  Google Scholar 

  17. Cai J, Xu D, Dong Z et al (2018) Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sustain Energy Rev 82:2705–2715. https://doi.org/10.1016/j.rser.2017.09.113

    Article  Google Scholar 

  18. Simão BL, Santana Júnior JA, Chagas BME et al (2018) Pyrolysis of Spirulina maxima: kinetic modeling and selectivity for aromatic hydrocarbons. Algal Res 32:221–232

    Article  Google Scholar 

  19. Hu S, Jess A, Xu M (2007) Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models. Fuel 86:2778–2788. https://doi.org/10.1016/j.fuel.2007.02.031

    Article  Google Scholar 

  20. Jun W, Mingxu Z, Mingqiang C et al (2006) Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass. Thermochim Acta 444:110–114. https://doi.org/10.1016/j.tca.2006.02.007

    Article  Google Scholar 

  21. Ding Y, Zhang J, He Q et al (2019) The application and validity of various reaction kinetic models on woody biomass pyrolysis. Energy 179:784–791. https://doi.org/10.1016/j.energy.2019.05.021

    Article  Google Scholar 

  22. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Biores Technol 101:4646–4655. https://doi.org/10.1016/j.biortech.2010.01.112

    Article  Google Scholar 

  23. Eri Q, Zhao X, Ranganathan P, Gu S (2017) Numerical simulations on the effect of potassium on the biomass fast pyrolysis in fluidized bed reactor. Fuel 197:290–297. https://doi.org/10.1016/j.fuel.2017.01.109

    Article  Google Scholar 

  24. Ranzi E, Corbetta M, Manenti F, Pierucci S (2014) Kinetic modeling of the thermal degradation and combustion of biomass. Chem Eng Sci 110:2–12. https://doi.org/10.1016/j.ces.2013.08.014

    Article  Google Scholar 

  25. Hameed S, Sharma A, Pareek V et al (2019) A review on biomass pyrolysis models : kinetic, network and mechanistic models. Biomass Bioenerg 123:104–122. https://doi.org/10.1016/j.biombioe.2019.02.008

    Article  Google Scholar 

  26. Casoni AI, Gutierrez VS, Volpe MA (2019) Conversion of sunflower seed hulls, waste from edible oil production, into valuable products. Journal of Environmental Chemical Engineering 7:102893

    Article  Google Scholar 

  27. Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis — a review of modelling, process parameters and catalytic studies. Renew Sustain Energy Rev 50:1081–1096. https://doi.org/10.1016/j.rser.2015.04.193

    Article  Google Scholar 

  28. Soria-Verdugo A, Rubio-Rubio M, Goos E, Riedel U (2018) Combining the lumped capacitance method and the simplified distributed activation energy model to describe the pyrolysis of thermally small biomass particles. Energy Convers Manage 175:164–172. https://doi.org/10.1016/j.enconman.2018.08.097

    Article  Google Scholar 

  29. Xiong Q, Zhang J, Xu F et al (2016) Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds. J Anal Appl Pyrol 117:176–181

    Article  Google Scholar 

  30. Vyazovkin S, Burnham AK, Criado JM et al (2011) ICTAC Kinetics Commitee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  31. Setter C, Silva FTM, Assis MR, et al (2020) Slow pyrolysis of coffee husk briquettes: characterization of the solid and liquid fractions. Fuel 261:. https://doi.org/10.1016/j.fuel.2019.116420

  32. Samolada MC, Vasalos IA (1991) A kinetic approach to the flash pyrolysis of biomass in a fluidized bed reactor. Fuel 70:883–889. https://doi.org/10.1016/0016-2361(91)90200-T

    Article  Google Scholar 

  33. Órfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials - three independent reactions model. Fuel 78:349–358. https://doi.org/10.1016/S0016-2361(98)00156-2

    Article  Google Scholar 

  34. Cardoso CR, Miranda MR, Santos KG, Ataíde CH (2011) Determination of kinetic parameters and analytical pyrolysis of tobacco waste and sorghum bagasse. J Anal Appl Pyrol 92:392–400

    Article  Google Scholar 

  35. Lopes FCR, Tannous K (2020) Coconut fiber pyrolysis decomposition kinetics applying single- and multi-step reaction models. Thermochim Acta 691:178714. https://doi.org/10.1016/j.tca.2020.178714

    Article  Google Scholar 

  36. Yu Y, Fu X, Yu L et al (2016) Combustion kinetics of pine sawdust biochar: data smoothing and isoconversional kinetic analysis. J Therm Anal Calorim 124:1641–1649. https://doi.org/10.1007/s10973-016-5296-y

    Article  Google Scholar 

  37. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  Google Scholar 

  38. Starink MJ (1998) A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta 228:97–104

    Google Scholar 

  39. Mumbach GD, Alves JLF, da Silva JCG et al (2019) Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean. Energy Convers Manage 200:112031. https://doi.org/10.1016/j.enconman.2019.112031

    Article  Google Scholar 

  40. Janković B (2008) Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem Eng J 139:128–135. https://doi.org/10.1016/j.cej.2007.07.085

    Article  Google Scholar 

  41. Luangkiattikhun P, Tangsathitkulchai C, Tangsathitkulchai M (2008) Non-isothermal thermogravimetric analysis of oil-palm solid wastes. Biores Technol 99:986–997. https://doi.org/10.1016/j.biortech.2007.03.001

    Article  Google Scholar 

  42. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933

    Article  Google Scholar 

  43. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P (2003) Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel 82:1949–1960. https://doi.org/10.1016/S0016-2361(03)00153-4

    Article  Google Scholar 

  44. Vyazovkin S, Burnham AK, Favergeon L et al (2020) ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta 689:178597. https://doi.org/10.1016/J.TCA.2020.178597

    Article  Google Scholar 

  45. Rueda-Ordóñez YJ, Tannous K, Olivares-Gómez E (2015) An empirical model to obtain the kinetic parameters of lignocellulosic biomass pyrolysis in an independent parallel reactions scheme. Fuel Process Technol 140:222–230. https://doi.org/10.1016/j.fuproc.2015.09.001

    Article  Google Scholar 

  46. Sfakiotakis S, Vamvuka D (2015) Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels. Biores Technol 197:434–442. https://doi.org/10.1016/J.BIORTECH.2015.08.130

    Article  Google Scholar 

  47. Upadhyay SK (2006) Chemical kinetics and reaction dynamics. Springer, New York

    Google Scholar 

  48. Li H, Liu F, Ma X et al (2019) Effects of biodiesel blends on the kinetic and thermodynamic parameters of fossil diesel during thermal degradation. Energy Convers Manage 198:111930. https://doi.org/10.1016/j.enconman.2019.111930

    Article  Google Scholar 

  49. Xu Y, Chen B (2013) Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Biores Technol 146:485–493. https://doi.org/10.1016/J.BIORTECH.2013.07.086

    Article  Google Scholar 

  50. Chen J, Wang Y, Lang X et al (2017) Evaluation of agricultural residues pyrolysis under non-isothermal conditions: thermal behaviors, kinetics, and thermodynamics. Biores Technol 241:340–348. https://doi.org/10.1016/j.biortech.2017.05.036

    Article  Google Scholar 

  51. Chong CT, Mong GR, Ng JH et al (2019) Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Convers Manage 180:1260–1267. https://doi.org/10.1016/J.ENCONMAN.2018.11.071

    Article  Google Scholar 

  52. Rodrigues JS, do Valle CP, de Araújo Gois Pinheiro Guerra P et al (2017) Study of kinetics and thermodynamic parameters of the degradation process of biodiesel produced from fish viscera oil. Fuel Process Technol 161:95–100. https://doi.org/10.1016/J.FUPROC.2017.03.013

    Article  Google Scholar 

  53. Uzun BB, Yaman E (2017) Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis. J Energy Inst 90:825–837. https://doi.org/10.1016/j.joei.2016.09.001

    Article  Google Scholar 

  54. Li H, Li L, Zhang R et al (2014) Fractional pyrolysis of Cyanobacteria from water blooms over HZSM-5 for high quality bio-oil production. J Energy Chem 23:732–741. https://doi.org/10.1016/S2095-4956(14)60206-0

    Article  Google Scholar 

  55. Açıkalın K (2021) Evaluation of orange and potato peels as an energy source: a comprehensive study on their pyrolysis characteristics and kinetics. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01387-z

    Article  Google Scholar 

  56. Vyazovkin S, Chrissafis K, Di Lorenzo ML et al (2014) ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23. https://doi.org/10.1016/j.tca.2014.05.036

    Article  Google Scholar 

  57. Carvalho WS, Oliveira TJ, Cardoso CR, Ataíde CH (2015) Thermogravimetric analysis and analytical pyrolysis of a variety of lignocellulosic sorghum. Chem Eng Res Des 95:337–345. https://doi.org/10.1016/j.cherd.2014.11.010

    Article  Google Scholar 

  58. Li Z, Zhao W, Meng B et al (2008) Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models. Biores Technol 99:7616–7622. https://doi.org/10.1016/j.biortech.2008.02.003

    Article  Google Scholar 

  59. Singh RK, Pandey D, Patil T, Sawarkar AN (2020) Pyrolysis of banana leaves biomass: physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Biores Technol 310:123464. https://doi.org/10.1016/j.biortech.2020.123464

    Article  Google Scholar 

  60. Fermoso J, Mašek O (2018) Thermochemical decomposition of coffee ground residues by TG-MS: a kinetic study. J Anal Appl Pyrol 130:358–367. https://doi.org/10.1016/j.jaap.2017.12.007

    Article  Google Scholar 

  61. Xiu-juan GUO, Shu-rong W, Kai-ge W et al (2010) Influence of extractives on mechanism of biomass pyrolysis. Journal of Fuel Chemistry and Technology 38:42–46. https://doi.org/10.1016/S1872-5813(10)60019-9

    Article  Google Scholar 

  62. Gouveia De Souza A, Oliveira Santos JC, Conceição MM et al (2004) A thermoanalytic and kinetic study of sunflower oil. Braz J Chem Eng 21:265–273. https://doi.org/10.1590/s0104-66322004000200017

    Article  Google Scholar 

  63. Czajka K, Kisiela A, Moroń W et al (2016) Pyrolysis of solid fuels: thermochemical behaviour, kinetics and compensation effect. Fuel Process Technol 142:42–53. https://doi.org/10.1016/j.fuproc.2015.09.027

    Article  Google Scholar 

  64. Branca C, Albano A, Di Blasi C (2005) Critical evaluation of global mechanisms of wood devolatilization. Thermochim Acta 429:133–141. https://doi.org/10.1016/j.tca.2005.02.030

    Article  Google Scholar 

  65. Amutio M, Lopez G, Alvarez J et al (2013) Pyrolysis kinetics of forestry residues from the Portuguese Central Inland Region. Chem Eng Res Des 91:2682–2690

    Article  Google Scholar 

  66. Anca-Couce A, Berger A, Zobel N (2014) How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel 123:230–240. https://doi.org/10.1016/j.fuel.2014.01.014

    Article  Google Scholar 

  67. Tahir MH, Çakman G, Goldfarb JL et al (2019) Demonstrating the suitability of canola residue biomass to biofuel conversion via pyrolysis through reaction kinetics, thermodynamics and evolved gas analyses. Biores Technol 279:67–73. https://doi.org/10.1016/J.BIORTECH.2019.01.106

    Article  Google Scholar 

  68. Naqvi SR, Hameed Z, Tariq R et al (2019) Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Manage 85:131–140. https://doi.org/10.1016/j.wasman.2018.12.031

    Article  Google Scholar 

  69. Ahmad MS, Mehmood MA, Taqvi STH et al (2017) Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential. Biores Technol 245:491–501. https://doi.org/10.1016/j.biortech.2017.08.162

    Article  Google Scholar 

  70. Boonchom B, Puttawong S (2010) Thermodynamics and kinetics of the dehydration reaction of FePO4·2H2O. Physica B 405:2350–2355. https://doi.org/10.1016/j.physb.2010.02.046

    Article  Google Scholar 

  71. Espenson JH (1995) Chemical kinetics and reaction mechanisms, 2nd edn. McGraw-Hill Inc., New York

    Google Scholar 

  72. Escobedo FA (2014) Engineering entropy in soft matter: the bad, the ugly and the good. Soft Matter 10:8388–8400. https://doi.org/10.1039/c4sm01646g

    Article  Google Scholar 

  73. Dai X, Hou C, Xu Z, et al (2019) Entropic effects in polymer nanocomposites. Entropy 21:. https://doi.org/10.3390/e21020186

Download references

Acknowledgements

The authors gratefully acknowledge the Federal University of Triângulo Mineiro, MG, Brazil, and the Federal University of Uberlândia, MG, Brazil.

Funding

The authors gratefully acknowledge the financial support of FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais [grant numbers APQ-02058-14, APQ-00652-18]).

Author information

Authors and Affiliations

Authors

Contributions

Fernando Lucas Tibola: investigation; data curation; roles/writing — original draft. Tiago José Pires de Oliveira: methodology; roles/writing — original draft; writing — review and editing. Carlos Henrique Ataíde: methodology; roles/writing — original draft; writing — review and editing. Daniel Alves Cerqueira: conceptualization; methodology; roles/writing — original draft; writing — review and editing. Nádia G. Sousa: data curation; visualization; roles/writing — original draft; writing — review and editing. Cássia R. Cardoso: conceptualization; data curation; resources; supervision; visualization; writing — review and editing.

Corresponding author

Correspondence to Cássia R. Cardoso.

Ethics declarations

Ethics approval and consent to participate

Not applicable. We declared that this manuscript does not involve researching about humans or animals.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tibola, F.L., de Oliveira, T.J.P., Ataíde, C.H. et al. Temperature-programmed pyrolysis of sunflower seed husks: application of reaction models for the kinetic and thermodynamic calculation. Biomass Conv. Bioref. 13, 13841–13858 (2023). https://doi.org/10.1007/s13399-021-02297-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02297-w

Keywords

Navigation