Skip to main content
Log in

Valorization of lignin from pine (Pinus spp.) residual sawdust: antioxidant activity and application in the green synthesis of silver nanoparticles for antibacterial purpose

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignin is the second most abundant biopolymer available whose functional groups make it a natural antioxidant. Pine residual sawdust is a lignocellulosic waste largely produced in sawmills by wood processing. Thus, this study aimed to evaluate the lignin from pine residual sawdust (PRSL) as an environmental-friendly antioxidant, and in the green synthesis of silver nanoparticles (LAgNPs), which were then tested against Gram-positive and Gram-negative bacteria. Three PRSL, previously obtained by sequential acid-alkaline treatment at 130, 150, and 170 °C, were assessed. The total phenolic content (TPC) and antioxidant activity of PRSL were also evaluated. PRSL showed strong potential as a natural antioxidant. LAgNPs were characterized by Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and transmission electron microscopy (TEM). LAgNPs presented a polydispersed mixture with an average diameter of 54.18 nm and efficient antibacterial properties. Therefore, this study demonstrated the great capability of PRSL as a natural antioxidant agent and for green synthesis of silver nanoparticles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Okolie JA, Nanda S, Dalai AK, Kozinski JA (2020) Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-020-01123-0

    Article  Google Scholar 

  2. Hu S, Lo HY (2016) Silver nanoparticle synthesis using lignin as reducing and capping agents: a kinetic and mechanistic study. Int J Biol Macromol 82:856–862. https://doi.org/10.1016/j.ijbiomac.2015.09.066

    Article  Google Scholar 

  3. Calvo‐Flores FG, Dobado JA, Isac‐García J, Martín‐MartíNez FJ (2015) Background and overview. In: Lignin and lignans as renewable raw materials: Chemistry, technology and applications, 1st edn. John Wiley & Sons, Ltd., p 8. https://doi.org/10.1002/9781118682784.ch1

  4. Espinoza-Acosta JL, Torres-Chávez PI, Ramírez-Wong B et al (2016) Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. BioResources 11:5452–5481. https://doi.org/10.15376/biores.11.2.Espinoza_Acosta

    Article  Google Scholar 

  5. García A, Toledano A, Andrés MÁ, Labidi J (2010) Study of the antioxidant capacity of Miscanthus sinensis lignins. Process Biochem 45:935–940. https://doi.org/10.1016/j.procbio.2010.02.015

    Article  Google Scholar 

  6. Karavalakis G, Hilari D, Givalou L et al (2011) Storage stability and ageing effect of biodiesel blends treated with different antioxidants. Energy 36:369–374. https://doi.org/10.1016/J.ENERGY.2010.10.029

    Article  Google Scholar 

  7. Jakeria MR, Fazal MA, Haseeb ASMA (2014) Influence of different factors on the stability of biodiesel: a review. Renew Sustain Energy Rev 30:154–163. https://doi.org/10.1016/J.RSER.2013.09.024

    Article  Google Scholar 

  8. Wise Guy Reports (2019) Global rubber antioxidant market insights, Forecast to 2025– WiseGuyReports

  9. Markets and Markets (2019) Plastic antioxidants Market worth 2.11 Billion USD by 2022

  10. An L, Wang G, Jia H et al (2017) Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance. Int J Biol Macromol 99:674–681. https://doi.org/10.1016/j.ijbiomac.2017.03.015

    Article  Google Scholar 

  11. Kai D, Tan MJ, Chee PL et al (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18:1175–1200. https://doi.org/10.1039/c5gc02616d

    Article  Google Scholar 

  12. Jiang B, Zhang Y, Gu L et al (2018) Structural elucidation and antioxidant activity of lignin isolated from rice straw and alkali-oxygen black liquor. Int J Biol Macromol 116:513–519. https://doi.org/10.1016/j.ijbiomac.2018.05.063

    Article  Google Scholar 

  13. García A, Giorgia S, Jalel L (2017) Antioxidant and biocide behaviour of lignin fractions from apple tree pruning residues. Ind Crop Prod J 104:242–252. https://doi.org/10.1007/978-1-4939-1447-0

    Article  Google Scholar 

  14. Kaur R, Uppal SK, Sharma P (2017) Antioxidant and antibacterial activities of sugarcane bagasse lignin and chemically modified lignins. Sugar Tech 19:675–680. https://doi.org/10.1007/s12355-017-0513-y

    Article  Google Scholar 

  15. Coral Medina DJ, Lorenci Woiciechowski A, Zandona Filho A et al (2016) Biological activities and thermal behavior of lignin from oil palm empty fruit bunches as potential source of chemicals of added value. Ind Crop Prod 94:630–637. https://doi.org/10.1016/j.indcrop.2016.09.046

    Article  Google Scholar 

  16. Ma P, Gao Y, Zhai H (2013) Fractionated wheat straw lignin and its application as antioxidant. BioResources 8:5581–5595. https://doi.org/10.15376/biores.8.4.5581-5595

    Article  Google Scholar 

  17. Cavali M, Ricardo Soccol C, Tavares D et al (2020) Effect of sequential acid-alkaline treatment on physical and chemical characteristics of lignin and cellulose from pine (Pinus spp.) residual sawdust. Bioresour Technol 316:123884. https://doi.org/10.1016/j.biortech.2020.123884

    Article  Google Scholar 

  18. Bravo C, Garcés D, Faba L et al (2017) Selective arabinose extraction from Pinus sp. sawdust by two-step soft acid hydrolysis. Ind Crop Prod 104:229–236. https://doi.org/10.1016/j.indcrop.2017.04.027

    Article  Google Scholar 

  19. Ogunwusi A (2014) Wood waste generation in the forest industry in Nigeria and prospects for its industrial utilization. Civ Environ Res 6:62–70

    Google Scholar 

  20. Vega LY, López L, Valdés CF, Chejne F (2019) Assessment of energy potential of wood industry wastes through thermochemical conversions. Waste Manag 87:108–118. https://doi.org/10.1016/J.WASMAN.2019.01.048

    Article  Google Scholar 

  21. Schneider VE, Peresin D, Andréia Cristina Trentin Taison AB, Sambuichi RHR (2012) Diagnóstico dos Resíduos Orgânicos do Setor Agrossilvopastoril e Agroindústrias Associadas. Inst Pesqui Econômica Apl – IPEA 134

  22. European Organization of the Sawmill Industry (2020) Building a green future - Annual Report 2019–2020

  23. Rominiyi OL, Adaramola BA, Ikumapayi OM et al (2017) Potential utilization of sawdust in energy, manufacturing and agricultural industry; waste to wealth. World J Eng Technol 05:526–539. https://doi.org/10.4236/wjet.2017.53045

    Article  Google Scholar 

  24. Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6:209. https://doi.org/10.3390/nano6110209

    Article  Google Scholar 

  25. Akbari A, Amini M, Tarassoli A et al (2018) Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures & Nano-Objects 14:19–48. https://doi.org/10.1016/J.NANOSO.2018.01.006

    Article  Google Scholar 

  26. Niska K, Zielinska E, Radomski MW, Inkielewicz-Stepniak I (2018) Metal nanoparticles in dermatology and cosmetology: interactions with human skin cells. Chem Biol Interact 295:38–51. https://doi.org/10.1016/J.CBI.2017.06.018

    Article  Google Scholar 

  27. Garcia CV, Shin GH, Kim JT (2018) Metal oxide-based nanocomposites in food packaging: applications, migration, and regulations. Trends Food Sci Technol 82:21–31. https://doi.org/10.1016/J.TIFS.2018.09.021

    Article  Google Scholar 

  28. Elegbede JA, Lateef A (2019) Green synthesis of silver (Ag), gold (Au), and silver–gold (Ag–Au) alloy nanoparticles: a review on recent advances, trends, and biomedical applications. In: Nanotechnology and nanomaterial applications in food, health, and biomedical sciences, 1st ed., p 87. Published 2015 by Apple Academic Press Inc. https://doi.org/10.1201/9780429425660-1

  29. Singh A, Kaur K (2019) Biological and physical applications of silver nanoparticles with emerging trends of green synthesis. Silver Nanoparticles - Heal Saf [Working Title]. https://doi.org/10.5772/intechopen.88684

    Article  Google Scholar 

  30. Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Mater Technol 13:18–23. https://doi.org/10.1016/j.susmat.2017.08.001

    Article  Google Scholar 

  31. Barabadi H, Tajani B, Moradi M et al (2019) Penicillium family as emerging nanofactory for biosynthesis of green nanomaterials: a journey into the world of microorganisms. J Clust Sci 30:843–856. https://doi.org/10.1007/s10876-019-01554-3

    Article  Google Scholar 

  32. Mollick MMR, Bhowmick B, Maity D et al (2012) Green synthesis of silver nanoparticles using Paederia foetida L. leaf extract and assessment of their antimicrobial activities. Int J Green Nanotechnol Biomed 4:230–239. https://doi.org/10.1080/19430892.2012.706103

    Article  Google Scholar 

  33. Ananda Murthy HC, DesalegnZeleke T, Ravikumar CR et al (2020) Electrochemical properties of biogenic silver nanoparticles synthesized using Hagenia abyssinica (Brace) JF. Gmel. medicinal plant leaf extract. Mater Res Express 7:055016. https://doi.org/10.1088/2053-1591/ab9252

    Article  Google Scholar 

  34. Arokiyaraj S, Dinesh Kumar V, Elakya V et al (2015) Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.—potential for malaria vector control. Environ Sci Pollut Res 22:9759–9765. https://doi.org/10.1007/s11356-015-4148-9

    Article  Google Scholar 

  35. Adelere IA, Lateef A (2011) Novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes and pigments. Nanotechnol Rev 5:42. https://doi.org/10.1515/ntrev-2016-0024

    Article  Google Scholar 

  36. Zevallos Torres LA, Woiciechowski AL, de Andrade O, Tanobe V et al (2021) Lignin from oil palm empty fruit bunches: characterization, biological activities and application in green synthesis of silver nanoparticles. Int J Biol Macromol 167:1499–1507. https://doi.org/10.1016/j.ijbiomac.2020.11.104

    Article  Google Scholar 

  37. Syafiuddin A, Salmiati SMR et al (2017) A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J Chinese Chem Soc 64:732–756. https://doi.org/10.1002/jccs.201700067

    Article  Google Scholar 

  38. Peng H, Guo H, Gao P et al (2021) Reduction of silver ions to silver nanoparticles by biomass and biochar: mechanisms and critical factors. Sci Total Environ 779:146326. https://doi.org/10.1016/j.scitotenv.2021.146326

    Article  Google Scholar 

  39. Milczarek G, Rebis T, Fabianska J (2013) Colloids and surfaces b: biointerfaces one-step synthesis of lignosulfonate-stabilized silver nanoparticles. Colloids Surfaces B Biointerfaces 105:335–341. https://doi.org/10.1016/j.colsurfb.2013.01.010

    Article  Google Scholar 

  40. Aadil KR, Barapatre A, Meena AS, Jha H (2016) Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles. Int J Biol Macromol 82:39–47. https://doi.org/10.1016/j.ijbiomac.2015.09.072

    Article  Google Scholar 

  41. Kanagamani K, Muthukrishnan P, Shankar K et al (2019) Antimicrobial, cytotoxicity and photocatalytic degradation of norfloxacin using Kleinia grandiflora mediated silver nanoparticles. J Clust Sci 30:1415–1424. https://doi.org/10.1007/s10876-019-01583-y

    Article  Google Scholar 

  42. Lateef A, Azeez MA, Asafa TB et al (2016) Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J Nanostructure Chem 6:159–169. https://doi.org/10.1007/s40097-016-0191-4

    Article  Google Scholar 

  43. Lateef A, Folarin BI, Oladejo SM et al (2018) Characterization, antimicrobial, antioxidant, and anticoagulant activities of silver nanoparticles synthesized from Petiveria alliacea L. leaf extract. Prep Biochem Biotechnol 48:646–652. https://doi.org/10.1080/10826068.2018.1479864

    Article  Google Scholar 

  44. Klapiszewski TR, M. K, et al (2015) Kraft lignin/silica-AgNPs as a functional material with antibacterial activity. Colloids Surfaces B Biointerfaces 134:220–228. https://doi.org/10.1016/j.colsurfb.2015.06.056

    Article  Google Scholar 

  45. Marulasiddeshwara MB, Dakshayani SS, Sharath Kumar MN et al (2017) Facile-one pot-green synthesis, antibacterial, antifungal, antioxidant and antiplatelet activities of lignin capped silver nanoparticles: a promising therapeutic agent. Mater Sci Eng C 81:182–190. https://doi.org/10.1016/j.msec.2017.07.054

    Article  Google Scholar 

  46. Vishwajeet S, Ankita S, Nitin W (2015) Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX. African J Biotechnol 14:2554–2567. https://doi.org/10.5897/ajb2015.14692

    Article  Google Scholar 

  47. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

  48. Karuppusamy S, Rajasekaran KM (2009) High throughput antibacterial screening of plant extracts by resazurin redox with special reference to medicinal plants of Western Ghats. Glob J Pharmacol 3:63–68

    Google Scholar 

  49. O’Brien J, Ian W, Terry O, François P (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  Google Scholar 

  50. Teh CH, Nazni WA, Nurulhusna AH et al (2017) Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiol 17:1–8. https://doi.org/10.1186/s12866-017-0936-3

    Article  Google Scholar 

  51. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21:506–523. https://doi.org/10.1016/j.rser.2012.12.022

    Article  Google Scholar 

  52. García A, González Alriols M, Spigno G, Labidi J (2012) Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochem Eng J 67:173–185. https://doi.org/10.1016/j.bej.2012.06.013

    Article  Google Scholar 

  53. Sadeghifar H, Argyropoulos DS (2015) Correlations of the antioxidant properties of softwood Kraft lignin fractions with the thermal stability of its blends with polyethylene. ACS Sustain Chem Eng 3:349–356. https://doi.org/10.1021/sc500756n

    Article  Google Scholar 

  54. Michelin M, Liebentritt S, Vicente AA, Teixeira JA (2018) Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: physicochemical and antioxidant properties. Int J Biol Macromol 120:159–169. https://doi.org/10.1016/j.ijbiomac.2018.08.046

    Article  Google Scholar 

  55. Sun S, Liu F, Zhang L, Fan X (2018) One-step process based on the order of hydrothermal and alkaline treatment for producing lignin with high yield and antioxidant activity. Ind Crops Prod 119:260–266. https://doi.org/10.1016/j.indcrop.2018.04.030

    Article  Google Scholar 

  56. Hu S, Lo HY (2015) Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent. Carbohydr Polym 131:134–141. https://doi.org/10.1016/j.carbpol.2015.05.060

    Article  Google Scholar 

  57. Xue Y, Qiu X, Liu Z, Li Y (2018) Facile and efficient synthesis of silver nanoparticles based on biorefinery wood lignin and its application as the optical sensor. ACS Sustain Chem Eng 6:7695–7703. https://doi.org/10.1021/acssuschemeng.8b00578

    Article  Google Scholar 

  58. Modrzejewska-Sikorska A, Konował E, Cichy A et al (2017) The effect of silver salts and lignosulfonates in the synthesis of lignosulfonate-stabilized silver nanoparticles. J Mol Liq 240:80–86. https://doi.org/10.1016/j.molliq.2017.05.065

    Article  Google Scholar 

  59. Lourençon TV, Hansel FA, Da Silva TA et al (2015) Hardwood and softwood Kraft lignins fractionation by simple sequential acid precipitation. Sep Purif Technol 154:82–88. https://doi.org/10.1016/j.seppur.2015.09.015

    Article  Google Scholar 

  60. Huang Y, Liu H, Yuan H et al (2018) Association of chemical structure and thermal degradation of lignins from crop straw and softwood. J Anal Appl Pyrolysis 134:25–34. https://doi.org/10.1016/J.JAAP.2018.04.008

    Article  Google Scholar 

  61. Mohan S, Oluwafemi OS, George SC et al (2014) Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydr Polym 106:469–474. https://doi.org/10.1016/j.carbpol.2014.01.008

    Article  Google Scholar 

  62. Sujitha MV, Kannan S (2013) Green synthesis of gold nanoparticles using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta Part A Mol Biomol Spectrosc 102:15–23. https://doi.org/10.1016/j.saa.2012.09.042

    Article  Google Scholar 

  63. Souza TGF, Ciminelli VST, Mohallem NDS (2016) A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. J Phys Conf Ser 733:012039. https://doi.org/10.1088/1742-6596/733/1/012039

    Article  Google Scholar 

  64. Pandey S, Goswami GK, Nanda KK (2012) Green synthesis of biopolymer–silver nanoparticle nanocomposite: an optical sensor for ammonia detection. Int J Biol Macromol 51:583–589. https://doi.org/10.1016/J.IJBIOMAC.2012.06.033

    Article  Google Scholar 

  65. Dhand C, Dwivedi N, Loh XJ et al (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5:105003–105037. https://doi.org/10.1039/c5ra19388e

    Article  Google Scholar 

  66. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1–17. https://doi.org/10.3389/fmicb.2016.01831

    Article  Google Scholar 

  67. Zheng K, Setyawati MI, Leong DT, Xie J (2018) Antimicrobial silver nanomaterials. Coord Chem Rev 357:1–17. https://doi.org/10.1016/j.ccr.2017.11.019

    Article  Google Scholar 

  68. Klapiszewski Ł, Rzemieniecki T, Krawczyk M et al (2015) Kraft lignin/silica-AgNPs as a functional material with antibacterial activity. Colloids Surfaces B Biointerfaces 134:220–228. https://doi.org/10.1016/j.colsurfb.2015.06.056

    Article  Google Scholar 

  69. Van Dong P, Ha C, Binh L, Kasbohm J (2012) Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett 2:9. https://doi.org/10.1186/2228-5326-2-9

    Article  Google Scholar 

  70. Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol 162:542–549. https://doi.org/10.1016/J.RESMIC.2011.04.009

    Article  Google Scholar 

  71. Li WR, Xie XB, Shi QS et al (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122. https://doi.org/10.1007/s00253-009-2159-5

    Article  Google Scholar 

  72. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. https://doi.org/10.1016/J.JCIS.2004.02.012

    Article  Google Scholar 

  73. Garza-Cervantes JA, Meza-Bustillos JF, Resendiz-Hernández H et al (2020) Re-sensitizing ampicillin and kanamycin-resistant E. coli and S. aureus using synergistic metal micronutrients-antibiotic combinations. Front Bioeng Biotechnol 8:1–21. https://doi.org/10.3389/fbioe.2020.00612

    Article  Google Scholar 

  74. Zhang S, Liu L, Pareek V et al (2014) Effects of broth composition and light condition on antimicrobial susceptibility testing of ionic silver. J Microbiol Methods 105:42–46. https://doi.org/10.1016/J.MIMET.2014.07.009

    Article  Google Scholar 

  75. Greulich C, Kittler S, Epple M et al (2009) Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbeck’s Arch Surg 394:495–502. https://doi.org/10.1007/s00423-009-0472-1

    Article  Google Scholar 

  76. Comfort KK, Maurer EI, Hussain SM (2014) Slow release of ions from internalized silver nanoparticles modifies the epidermal growth factor signaling response. Colloids Surfaces B Biointerfaces 123:136–142. https://doi.org/10.1016/j.colsurfb.2014.09.008

    Article  Google Scholar 

  77. Kędziora A, Speruda M, Krzyżewska E et al (2018) Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 19:444. https://doi.org/10.3390/ijms19020444

    Article  Google Scholar 

  78. Mosselhy DA, El-Aziz MA, Hanna M et al (2015) Comparative synthesis and antimicrobial action of silver nanoparticles and silver nitrate. J Nanoparticle Res 17:1–10. https://doi.org/10.1007/s11051-015-3279-8

    Article  Google Scholar 

  79. Reidy B, Haase A, Luch A et al (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials (Basel) 6:2295–2350. https://doi.org/10.3390/ma6062295

    Article  Google Scholar 

  80. Zhang Y, Peng H, Huang W et al (2008) Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J Colloid Interface Sci 325:371–376. https://doi.org/10.1016/J.JCIS.2008.05.063

    Article  Google Scholar 

  81. Richter AP, Brown JS, Bharti B et al (2015) An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat Nanotechnol 10:817–823. https://doi.org/10.1038/nnano.2015.141

    Article  Google Scholar 

  82. Oldenburg SJ, Saunders AE (2021) Silver nanomaterials for biological applications. Merck Group. Available from: https://www.sigmaaldrich.com/BR/pt/technical-documents/technical-article/materials-science-and-engineering/biosensors-and-imaging/silver-nanomaterials

  83. Chauret CP (2014) Sanitization. Encycl Food Microbiol Second Ed 3:360–364. https://doi.org/10.1016/B978-0-12-384730-0.00407-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Adenise Lorenci Woiciechowski.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavali, M., Soccol, C.R., Tavares, D. et al. Valorization of lignin from pine (Pinus spp.) residual sawdust: antioxidant activity and application in the green synthesis of silver nanoparticles for antibacterial purpose. Biomass Conv. Bioref. 13, 10051–10063 (2023). https://doi.org/10.1007/s13399-021-01940-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01940-w

Keywords

Navigation