1 Introduction

Denote by \(\mathcal H\) the class of analytic functions in \(\mathbb D:= \left\{ z \in \mathbb C: |z|<1 \right\} \) with Taylor expansion

$$\begin{aligned} f(z) = \sum _{n=1}^{\infty }a_{n}z^{n},\quad z\in \mathbb D, \end{aligned}$$
(1)

and let \(\mathcal A\) be the subclass of f normalized by \(f'(0)=1.\) Let \(\mathcal S\) denote the subclass of univalent functions in \(\mathcal A\).

For \(f\in \mathcal S\), logarithmic coefficients \(\gamma _n:=\gamma _n(f)\) of f are defined by

$$\begin{aligned} F_f(z):=\log \frac{f(z)}{z}=2\sum _{n=1}^\infty \gamma _n(f) z^n,\quad z\in \mathbb D,\ \log 1:=0. \end{aligned}$$
(2)

and play a crucial role in the theory of univalent functions, and in articular to prove the Milin conjecture ([19], see also [7, p. 155]). We note that for the class \(\mathcal S\) sharp estimates are known only for \(\gamma _1\) and \(\gamma _2,\) namely,

$$\begin{aligned} |\gamma _1|\le 1,\quad |\gamma _2|\le \frac{1}{2}+\frac{1}{\textrm{e}^2}=0.635\dots \end{aligned}$$

Estimating the modulus of logarithmic coefficients for \(f\in \mathcal S\) and various subclasses has been considered recently by several authors (e.g., [1, 2, 5, 8, 12, 24]).

For \(q,n \in \mathbb N,\) the Hankel determinant \(H_{q,n}(f)\) of \(f\in \mathcal A\) of the form (1) is defined as

$$\begin{aligned} H_{q,n}(f) := \begin{vmatrix} a_{n}&a_{n+1}&\cdots&a_{n+q-1} \\ a_{n+1}&a_{n+2}&\cdots&a_{n+q} \\ \vdots&\vdots&\vdots&\vdots \\ a_{n+q-1}&a_{n+q}&\cdots&a_{n+2(q-1)} \end{vmatrix}, \end{aligned}$$

and in particular many authors have examined the second and the third Hankel determinants \(H_{2,2}(f)\) and \(H_{3,1}(f)\) over selected subclasses of \(\mathcal A,\) (see e.g., [4, 11] with further references). We note that \(H_{2,1}(f)=a_3-a_2^2\) is the well known coefficient functional which for \(\mathcal S\) was studied first in 1916 by Bieberbach (see e.g., [9, Vol. I, p. 35]).

Based on the these ideas, in this paper and in [10] we propose research study of the Hankel determinants \(H_{q,n}(F_f/2)\) which entries are logarithmic coefficients of f. We are therefore concerned with

$$\begin{aligned} H_{q,n}(F_f/2) = \begin{vmatrix} \gamma _{n}&\gamma _{n+1}&\cdots&\gamma _{n+q-1} \\ \gamma _{n+1}&\gamma _{n+2}&\cdots&\gamma _{n+q} \\ \vdots&\vdots&\vdots&\vdots \\ \gamma _{n+q-1}&\gamma _{n+q}&\cdots&\gamma _{n+2(q-1)} \end{vmatrix}. \end{aligned}$$

Differentiating (2) and using (1) we obtain

$$\begin{aligned} \gamma _{1}=\frac{1}{2}a_{2},\quad \gamma _{2}=\frac{1}{2}\left( a_{3}-\frac{1}{2}a_{2}^{2}\right) ,\quad \gamma _{3}=\frac{1}{2}\left( a_{4}-a_{2}a_{3}+\frac{1}{3}a_{2}^{3}\right) , \end{aligned}$$
(3)

and so

$$\begin{aligned} H_{2,1}(F_f/2)=\gamma _1\gamma _3-\gamma _2^2=\frac{1}{4}\left( a_2a_4-a_3^2+\frac{1}{12}a_2^4\right) . \end{aligned}$$
(4)

Note that when \(f\in \mathcal S,\) then for \(f_\theta (z):=\textrm{e}^{-\textrm{i}\theta }f(\textrm{e}^{\textrm{i}\theta }z),\ \theta \in \mathbb R,\)

$$\begin{aligned} H_{2,1}(F_{f_\theta }/2)=\frac{\textrm{e}^{4\textrm{i}\theta }}{4}\left( a_2a_4-a_3^2+\frac{1}{12}a_2^4\right) =\textrm{e}^{4\textrm{i}\theta }H_{2,1}(F_f/2), \end{aligned}$$
(5)

so \(|H_{2,1}(F_{f_\theta }/2)|\) is rotationally invariant.

In this paper we find sharp upper bounds for \(H_{2,1}(F_f/2)\) in the case when f is strongly starlike or strongly convex function of order \(\alpha ,\) defined respectively as follows. Given \(\alpha \in (0,1],\) a function \(f\in \mathcal A\) is called strongly starlike of order \(\alpha \) if

$$\begin{aligned} \left| \arg \frac{zf'(z)}{f(z)}\right| <\alpha \frac{\pi }{2},\quad z\in \mathbb D,\ \arg 1:=0. \end{aligned}$$
(6)

Also, a function \(f\in \mathcal A\) is called strongly convex of order \(\alpha \) if

$$\begin{aligned} \left| \arg \left\{ 1+\frac{zf''(z)}{f'(z)}\right\} \right| <\alpha \frac{\pi }{2},\quad z\in \mathbb D,\ \arg 1:=0. \end{aligned}$$
(7)

We denote these classes by \(\mathcal S^*_\alpha \) and \(\mathcal S^c_\alpha \) respectively, noting that \(\mathcal S^*_1=:\mathcal S^*\) and \(\mathcal S^c_1=:\mathcal S^c\) are the classes of starlike and convex functions, respectively.

The class of strongly starlike functions was introduced by Stankiewicz [21, 22], and independently by Brannan and Kirwan [3] (see also [9, Vol. I, pp. 137-142]). Stankiewicz [22] found an external geometrical characterization of strongly starlike functions and Brannan and Kirwan gave a geometrical condition called \(\delta \)-visibility, which is sufficient for functions to be strongly starlike. Subsequently Ma and Minda [16] proposed an internal characterization of functions in \(\mathcal S_\alpha ^*\) based on the concept of k-starlike domains. Further results regarding the geometry of strongly starlike functions were given in [14, Chapter IV], [15] and [23].

In view of (6) and (7) both classes \(\mathcal S^*_\alpha \) and \(\mathcal S^c_\alpha \) can be represented using the Carathéodory class \(\mathcal P\), i.e., the class of analytic functions p in \(\mathbb D\) of the form

$$\begin{aligned} p(z) = 1 + \sum _{n=1}^{\infty }c_{n}z^{n}, \quad z\in \mathbb D, \end{aligned}$$
(8)

having a positive real part in \(\mathbb D.\) Thus the coefficients of functions in \(\mathcal S^*_\alpha \) and \(\mathcal S^c_\alpha \) have a convenient representation in terms of the coefficients of functions in \(\mathcal P.\) Therefore obtaining the upper bound of \(H_{2,1}(F_f/2),\) we base our analysis on well-known expressions for \(c_2\) (e.g., [20, p. 166]), and \(c_3\) (Libera and Zlotkiewicz [17, 18]), and \(c_4\) obtained recently in [13], all of which are contained in the following lemma [13]. Let \(\overline{\mathbb D}:=\{z\in \mathbb C:|z|\le 1\}\) and \(\mathbb T:=\{z\in \mathbb C:|z|= 1\}.\)

Lemma 1

If \(p \in {\mathcal P}\) and is given by (6) with \(c_1\ge 0,\) then

$$\begin{aligned} c_1=2\zeta _1, \end{aligned}$$
(9)
$$\begin{aligned} c_2=2\zeta _1^2+2(1-\zeta _1^2)\zeta _2 \end{aligned}$$
(10)

and

$$\begin{aligned} c_3=2\zeta _1^3+4(1-\zeta _1^2)\zeta _1\zeta _2-2(1-\zeta _1^2)\zeta _1\zeta _2^2+2(1-\zeta _1^2)(1-|\zeta _2|^2)\zeta _3. \end{aligned}$$
(11)

for some \(\zeta _1\in [0,1]\) and \(\zeta _2,\zeta _3\in \overline{\mathbb D}.\)

For \(\zeta _1\in \mathbb T,\) there is a unique function \(p\in \mathcal P\) with \(c_1\) as in (9), namely,

$$\begin{aligned} p(z)=\frac{1+\zeta _1z}{1-\zeta _1z},\quad z\in \mathbb D. \end{aligned}$$

For \(\zeta _1\in \mathbb D\) and \(\zeta _2\in \mathbb T,\) there is a unique function \(p\in \mathcal P\) with \(c_1\) and \(c_2\) as in (9)–(10), namely,

$$\begin{aligned} p(z)=\frac{1+\left( \overline{\zeta _1}\zeta _2+\zeta _1\right) z+\zeta _2z^2}{1+\left( \overline{\zeta _1}\zeta _2-\zeta _1\right) z-\zeta _2z^2},\quad z\in \mathbb D. \end{aligned}$$
(12)

For \(\zeta _1,\zeta _2\in \mathbb D\) and \(\zeta _3\in \mathbb T,\) there is a unique function \(p\in \mathcal P\) with \(c_1,\) \(c_2\) and \(c_3\) as in (9)–(11), namely,

$$\begin{aligned} p(z)=\frac{1+\left( \overline{\zeta _2}\zeta _3+\overline{\zeta _1}\zeta _2+\zeta _1\right) z+\left( \overline{\zeta _1}\zeta _3+\zeta _1\overline{\zeta _2}\zeta _3+\zeta _2\right) z^2+\zeta _3z^3}{1+\left( \overline{\zeta _2}\zeta _3+\overline{\zeta _1}\zeta _2-\zeta _1\right) z+\left( \overline{\zeta _1}\zeta _3-\zeta _1\overline{\zeta _2}\zeta _3-\zeta _2\right) z^2-\zeta _3z^3},\quad z\in \mathbb D. \end{aligned}$$
(13)

We will also use the following lemma.

Lemma 2

[6] Given real numbers ABC,  let

$$\begin{aligned} Y(A,B,C):= \max \left\{ |A+Bz+Cz^2|+1-|z|^2: z\in \overline{\mathbb {D}}\right\} . \end{aligned}$$

I. If \(AC\ge 0,\) then

$$\begin{aligned} Y(A,B,C)={\left\{ \begin{array}{ll} |A|+|B|+|C|, &{} |B|\ge 2(1-|C|),\\ 1+|A|+\dfrac{B^2}{4(1-|C|)}, &{} |B|<2(1-|C|). \end{array}\right. } \end{aligned}$$

II. If \(AC<0,\) then

$$\begin{aligned} \begin{aligned}&Y(A,B,C)\\&\quad ={\left\{ \begin{array}{ll} 1-|A|+\dfrac{B^2}{4(1-|C|)}, &{} -4AC(C^{-2}-1)\le B^2 \wedge |B|<2(1-|C|),\\ 1+|A|+\dfrac{B^2}{4(1+|C|)}, &{} B^2<\min \left\{ 4(1+|C|)^2,-4AC(C^{-2}-1)\right\} ,\\ R(A,B,C), &{} \textrm{otherwise} , \end{array}\right. } \end{aligned} \end{aligned}$$

where

$$\begin{aligned} R(A,B,C):={\left\{ \begin{array}{ll} |A|+|B|-|C|, &{} |C|(|B|+4|A|)\le |AB|, \\ -|A|+|B|+|C|, &{} |AB|\le |C|(|B|-4|A|), \\ (|C|+|A|)\sqrt{1-\dfrac{B^2}{4AC}}, &{} \textrm{otherwise}. \end{array}\right. } \end{aligned}$$

2 Strongly starlike functions

We prove the following sharp inequality for \(|H_{2,1}(F_f/2)|\) for the class \(\mathcal S^*_\alpha .\)

Theorem 1

If \(f\in \mathcal S^*_\alpha ,\) \(\alpha \in (0,1],\) then

$$\begin{aligned} |H_{2,1}(F_f/2)|=|\gamma _1\gamma _3-\gamma _2^2|\le \frac{1}{4}\alpha ^2. \end{aligned}$$
(14)

The inequality is sharp.

Proof

Fix \(\alpha \in (0,1]\) and let \(f \in \mathcal S^*_\alpha \) be given by (1). Then by (6),

$$\begin{aligned} zf'(z)=(p(z))^\alpha f(z),\quad z\in \mathbb D, \end{aligned}$$
(15)

for some \(p \in \mathcal P\) given by (8). Substituting (1) and (8) into (15) and equating coefficients gives

$$\begin{aligned} \begin{aligned}&a_2 =\alpha c_1, \quad a_3=\frac{\alpha }{4}\left[ 2c_2+(3\alpha -1)c_1^2\right] ,\\&a_4 = \frac{\alpha }{36}\left[ 12c_3+6(5\alpha -2)c_1c_2+(17\alpha ^2-15\alpha +4)c_1^3\right] . \end{aligned} \end{aligned}$$
(16)

Since the class \(\mathcal S^*_\alpha \) is invariant under the rotations and (5) holds, we may assume that \(a_2\ge 0\), so by (16) that \(c_1 \ge 0,\) i.e., in view of (9) that \(\zeta _1\in [0,1].\) Hence from (4) and (9)–(11) we obtain

$$\begin{aligned} \begin{aligned}&\gamma _1\gamma _3-\gamma _2^2=\frac{1}{4}\left( a_2a_4-a_3^2+\frac{1}{12}a_2^4\right) \\&\quad =\frac{\alpha ^2}{576}\left[ 48c_1c_3-12(1-\alpha )c_1^2c_2-36c_2^2+(7+\alpha )(1-\alpha )c_1^4\right] \\&\quad =\frac{\alpha ^2}{36}\left[ (4-\alpha ^2)\zeta _1^4+6\alpha (1-\zeta _1^2)\zeta _1^2\zeta _2-3(3+\zeta _1^2)(1-\zeta _1^2)\zeta _2^2\right. \\&\left. \qquad +12(1-\zeta _1^2)(1-|\zeta _2|^2)\zeta _1\zeta _3\right] . \end{aligned} \end{aligned}$$
(17)

A. Suppose that \(\zeta _1=1.\) Then by (17), for \(\alpha \in (0,1],\)

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|=\frac{\alpha ^2(4-\alpha ^2)}{36}\le \frac{\alpha ^2}{4}. \end{aligned}$$

B. Suppose that \(\zeta _1=0.\) Then by (17), for \(\alpha \in (0,1],\)

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|=\frac{\alpha ^2}{4}|\zeta _2|^2\le \frac{\alpha ^2}{4}. \end{aligned}$$

C. Suppose that \(\zeta _1\in (0,1).\) Then since \(|\zeta _3|\le 1\) from (17) we obtain

$$\begin{aligned} \begin{aligned}&|\gamma _1\gamma _3-\gamma _2^2|\\&\quad \le \frac{\alpha ^2}{36}\left[ \left| (4-\alpha ^2)\zeta _1^4+6\alpha (1-\zeta _1^2)\zeta _1^2\zeta _2-3(3+\zeta _1^2)(1-\zeta _1^2)\zeta _2^2\right| \right. \\&\left. \qquad +12(1-\zeta _1^2)(1-|\zeta _2|^2)\zeta _1\right] \\&\quad \le \frac{\alpha ^2}{3}\zeta _1(1-\zeta _1^2)\left[ |A+B\zeta _2+C\zeta _2^2|+1-|\zeta _2|^2\right] , \end{aligned} \end{aligned}$$
(18)

where

$$\begin{aligned} A:=\frac{(4-\alpha ^2)\zeta _1^3}{12(1-\zeta _1^2)},\quad B:=\frac{1}{2}\alpha \zeta _1,\quad C:=-\frac{3+\zeta _1^2}{4\zeta _1}. \end{aligned}$$

Since \(AC<0,\) we now apply Lemma 2 only for the case II.

C1. Note that the inequality

$$\begin{aligned} -4AC\left( \frac{1}{C^2}-1\right) -B^2=\frac{(4-\alpha ^2)\zeta _1^2(3+\zeta _1^2)}{12(1-\zeta _1^2)}\left( \frac{16\zeta _1^2}{(3+\zeta _1^2)^2}-1\right) -\frac{\alpha ^2}{4}\zeta _1^2\le 0 \end{aligned}$$

is equivalent to

$$\begin{aligned} -\frac{(4-\alpha ^2)(9-\zeta _1^2)}{3(3+\zeta _1^2)}-\alpha ^2\le 0, \end{aligned}$$

which evidently holds for \(\zeta _1\in (0,1).\)

However, the inequality \(|B|<2(1-|C|)\) is equivalent to \(\alpha \zeta _1^2<-(1-\zeta _1^2)(3-\zeta _1^2),\) which is false for \(\zeta _1\in (0,1).\)

C2. Since

$$\begin{aligned} 4(1+|C|)^2=\frac{(\zeta _1^2+4\zeta _1+3)^2}{4\zeta _1^2}>0 \end{aligned}$$

and

$$\begin{aligned} -4AC\left( \frac{1}{C^2}-1\right) =-\frac{(4-\alpha ^2)\zeta _1^2(9-\zeta _1^2)}{12(3+\zeta _1^2)}<0, \end{aligned}$$

a simple calculation shows that the inequality

$$\begin{aligned} \frac{\alpha ^2\zeta _1^2}{4}=B^2<\min \left\{ 4(1+|C|)^2,-4AC\left( \frac{1}{C^2}-1\right) \right\} =-\frac{(4-\alpha ^2)\zeta _1^2(9-\zeta _1^2)}{12(3+\zeta _1^2)} \end{aligned}$$

is false for \(\zeta _1\in (0,1).\)

C3. Next note that the inequality

$$\begin{aligned} |C|(|B|+4|A|)-|AB|=\frac{3+\zeta _1^2}{4\zeta _1}\left( \frac{1}{2}\alpha \zeta _1+\frac{(4-\alpha ^2)\zeta _1^3}{3(1-\zeta _1^2)}\right) -\frac{\alpha (4-\alpha ^2)\zeta _1^4}{24(1-\zeta _1^2)}\le 0 \end{aligned}$$

is equivalent to \((\alpha -1)(\alpha ^2-\alpha -8)\zeta _1^4-6(\alpha ^2+\alpha -4)\zeta _1^2+9\alpha \le 0.\) However the last inequality is false for \(\zeta _1\in (0,1)\) since \((\alpha -1)(\alpha ^2-\alpha -8)\ge 0\) and \(\alpha ^2+\alpha -4<0\) for \(\alpha \in (0,1].\)

C4. Note that the inequality

$$\begin{aligned} \begin{aligned}&|AB|-|C|(|B|-4|A|)\\&\quad =\frac{\alpha (4-\alpha ^2)\zeta _1^4}{24(1-\zeta _1^2)}-\frac{3+\zeta _1^2}{4\zeta _1}\left( \frac{1}{2}\alpha \zeta _1-\frac{(4-\alpha ^2)\zeta _1^3}{3(1-\zeta _1^2)}\right) \le 0 \end{aligned} \end{aligned}$$
(19)

is equivalent to

$$\begin{aligned} \delta (\zeta _1^2)\ge 0, \end{aligned}$$
(20)

where

$$\begin{aligned} \delta (t):=9\alpha -3(8+2\alpha -2\alpha ^2)t-(8+7\alpha -2\alpha ^2-\alpha ^3)t^2,\quad t\in (0,1). \end{aligned}$$

We see that for \(\alpha \in (0,1],\)

$$\begin{aligned} 8+2\alpha -2\alpha ^2>0,\quad 8+7\alpha -2\alpha ^2-\alpha ^3>0, \end{aligned}$$
(21)

and the discriminant \(\varDelta :=144(4+4\alpha -\alpha ^3)>0\) for \(\alpha \in (0,1].\) Thus we consider

$$\begin{aligned} t_{1,2}:=\frac{3(8+2\alpha -2\alpha ^2)\mp 12\sqrt{4+4\alpha -\alpha ^3}}{-2(8+7\alpha -2\alpha ^2-\alpha ^3)}. \end{aligned}$$

From (21) it follows that \(t_2<0\) and so it remains to check if \(0<t_1<1.\) The inequality \(t_1>0\) is equivalent to \(8\alpha +7\alpha ^2-2\alpha ^3-\alpha ^4>0\) which is true for \(\alpha \in (0,1].\) Further, the inequality \(t_1<1\) can be written as

$$256+256\alpha -100\alpha ^2-104\alpha ^3+5\alpha ^4+10\alpha ^5+\alpha ^6>0$$

which is true since

$$\begin{aligned} \begin{aligned}&256+256\alpha -100\alpha ^2-104\alpha ^3+5\alpha ^4+10\alpha ^5+\alpha ^6\\&\quad>52+256\alpha +5\alpha ^4+10\alpha ^5+\alpha ^6>0,\quad \alpha \in (0,1]. \end{aligned} \end{aligned}$$

Therefore (20), and so (19) is valid for \(0< \zeta _1\le \zeta ':=\sqrt{t_1}.\) Then by (19), Lemma 2 and the fact that \(\varphi \) decreases, we obtain

$$\begin{aligned} \begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|&\le \frac{\alpha ^2}{3}\zeta _1(1-\zeta _1^2)(-|A|+|B|+|C|)\\&=\frac{\alpha ^2}{36}\varphi (\zeta _1)\le \frac{\alpha ^2}{36}\varphi (0)=\frac{\alpha ^2}{4}, \end{aligned} \end{aligned}$$
(22)

where

$$\begin{aligned} \varphi (u):=9-6(1-\alpha )u^2-(1+\alpha )(7-\alpha )u^4,\quad 0\le u\le \zeta '. \end{aligned}$$

C5. It remains to consider the last case in Lemma 2, which in view of C4, holds for \(\zeta '<\zeta _1<1.\) Then by (18),

$$\begin{aligned} \begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|&\le \frac{\alpha ^2}{3}\zeta _1(1-\zeta _1^2)(|C|+|A|)\sqrt{1-\dfrac{B^2}{4AC}}\\&=\frac{\alpha ^2}{18}\psi (\zeta _1)\le \frac{\alpha ^2}{18}\psi (\zeta '), \end{aligned} \end{aligned}$$
(23)

where

$$\begin{aligned} \psi (t):=\left[ 9-6t^2+(1-\alpha ^2)t^4\right] \sqrt{\frac{3+(1-\alpha ^2)t^2}{(4-\alpha ^2)(3+t^2)}},\quad \zeta '\le t<1. \end{aligned}$$

To see that the last inequality in (23) is true, note that the function \(\psi \) is decreasing, since

$$\begin{aligned} \begin{aligned} \psi '(t)=&-\frac{t}{(4-\alpha ^2)(3+t^2)^2}\sqrt{\frac{(4-\alpha ^2)(3+t^2)}{3+(1-\alpha ^2)t^2}}\\&\times \left[ 4(9-(1-\alpha ^2)^2t^4)(3+t^2)+3\alpha ^2(3-(1-\alpha )t^2)(3-(1+\alpha )t^2)\right] <0 \end{aligned} \end{aligned}$$

for \(\zeta '< t<1.\)

Simple but tedious computations show that

$$\begin{aligned} \varphi (\zeta ')=\psi (\zeta '). \end{aligned}$$

Hence from (22) and (23) we see that

$$\begin{aligned} \frac{\alpha ^2}{18}\psi (\zeta ')\le \frac{\alpha ^2}{4}. \end{aligned}$$

D. Summarizing from parts A-C we see that inequality (14) follows.

Equality holds for the function \(f\in \mathcal A\) given by (15), where

$$\begin{aligned} p(z):=\frac{1+z^2}{1-z^2},\quad z\in \mathbb {D}. \end{aligned}$$
(24)

Then \(c_1=c_3=0\) and \(c_2=2,\) so by (16), \(a_2=a_4=0\) and \(a_3=\alpha \), and therefore by (3), \(\gamma _1=\gamma _3=0\) and \(\gamma _2=\alpha /2,\) which completes the proof of the theorem. \(\square \)

For \(\alpha =1\) we obtain the following result for the class \(\mathcal S^*\) of starlike functions [10].

Corollary 1

If \(f\in \mathcal S^*,\) then

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|\le \frac{1}{4}. \end{aligned}$$

The inequality is sharp.

3 Strongly convex functions

We prove the following sharp inequality for \(|H_{2,1}(F_f/2)|\) in the class \(\mathcal S^c_\alpha .\)

Theorem 2

If \(f\in \mathcal S^c_\alpha ,\) \(\alpha \in (0,1],\) then

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|\le {\left\{ \begin{array}{ll}\dfrac{\alpha ^2}{36}, &{} 0<\alpha \le \dfrac{1}{3},\\ \dfrac{\alpha ^2(17+18\alpha +13\alpha ^2)}{144(4+6\alpha +\alpha ^2)}, &{} \dfrac{1}{3}<\alpha \le 1. \end{array}\right. } \end{aligned}$$
(25)

Both inequalities are sharp.

Proof

Fix \(\alpha \in (0,1]\) and let \(f \in \mathcal S^c_\alpha \) be given by (1). Then by (7),

$$\begin{aligned} f'(z)+zf''(z)=f'(z)(p(z))^\alpha ,\quad z\in \mathbb D, \end{aligned}$$
(26)

for some \(p \in \mathcal P\) given by (8). Substituting (1) and (8) into (26) and equating coefficients we obatin

$$\begin{aligned} \begin{aligned}&a_2= \frac{1}{2}\alpha c_1, \quad a_3=\frac{\alpha }{12}\left[ 2c_2+(3\alpha -1)c_1^2\right] ,\\&a_4 = \frac{\alpha }{144}\left[ 12c_3+6(5\alpha -2)c_1c_2+(17\alpha ^2-15\alpha +4)c_1^3\right] . \end{aligned} \end{aligned}$$
(27)

As in the proof of Theorem 1 we may assume that \(c_1 \ge 0,\) i.e., in view of (9) that \(\zeta _1\in [0,1].\) Hence from (4) and (9)–(11) we have

$$\begin{aligned} \begin{aligned} \gamma _1\gamma _3-\gamma _2^2&=\frac{\alpha ^2}{2304}\left[ 24c_1c_3+4(3\alpha -2)c_1^2c_2-16c_2^2+(\alpha ^2-6\alpha +4)c_1^4\right] \\&=\frac{\alpha ^2}{144}\left[ (2+\alpha ^2)\zeta _1^4+6\alpha (1-\zeta _1^2)\zeta _1^2\zeta _2-2(1-\zeta _1^2)(2+\zeta _1^2)\zeta _2^2\right. \\&\quad \left. +6(1-\zeta _1^2)(1-|\zeta _2|^2)\zeta _1\zeta _3\right] . \end{aligned} \end{aligned}$$
(28)

A. Suppose that \(\zeta _1=1.\) Then by (28), for \(\alpha \in (0,1],\)

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|=\frac{\alpha ^2(2+\alpha ^2)}{144}. \end{aligned}$$
(29)

B. Suppose that \(\zeta _1=0.\) Then from (28), for \(\alpha \in (0,1],\)

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|=\frac{\alpha ^2}{36}|\zeta _2|^2\le \frac{\alpha ^2}{36}. \end{aligned}$$
(30)

C. Suppose that \(\zeta _1\in (0,1).\) Since \(|\zeta _3|\le 1\) from (28) we obtain

$$\begin{aligned} \begin{aligned}&|\gamma _1\gamma _3-\gamma _2^2|\\&\quad \le \frac{\alpha ^2}{144}\left[ \left| (2+\alpha ^2)\zeta _1^4+6\alpha (1-\zeta _1^2)\zeta _1^2\zeta _2-2(1-\zeta _1^2)(2+\zeta _1^2)\zeta _2^2\right| \right. \\&\qquad +\left. 6(1-\zeta _1^2)(1-|\zeta _2|^2)\zeta _1\right] \\&\quad =\frac{\alpha ^2}{24}\zeta _1(1-\zeta _1^2)\left[ |A+B\zeta _2+C\zeta _2^2|+1-|\zeta _2|^2\right] , \end{aligned} \end{aligned}$$
(31)

where

$$\begin{aligned} A:=\frac{(2+\alpha ^2)\zeta _1^3}{6(1-\zeta _1^2)},\quad B:=\alpha \zeta _1,\quad C:=-\frac{2+\zeta _1^2}{3\zeta _1}. \end{aligned}$$

Since \(AC<0,\) we apply Lemma 2 only in the case II.

C1. Note that the inequality

$$\begin{aligned} -4AC\left( \frac{1}{C^2}-1\right) -B^2=\frac{2(2+\alpha ^2)\zeta _1^2(2+\zeta _1^2)}{9(1-\zeta _1^2)}\left( \frac{9\zeta _1^2}{(2+\zeta _1^2)^2}-1\right) -\alpha ^2\zeta _1^2\le 0 \end{aligned}$$

is equivalent to \(-2(2+\alpha ^2)(4-\zeta _1^2)\le 9\alpha ^2(2+\zeta _1^2),\) which evidently holds for \(\zeta _1\in (0,1).\)

Moreover, the inequality \(|B|<2(1-|C|)\) is equivalent to \(3\alpha \zeta _1^2< -2(1-\zeta _1)(2-\zeta _1),\) which is false for \(\zeta _1\in (0,1).\)

C2. Since

$$\begin{aligned} 4(1+|C|)^2=\frac{4(\zeta _1^2+3\zeta _1+2)^2}{9\zeta _1^2}>0 \end{aligned}$$

and

$$\begin{aligned} -4AC\left( \frac{1}{C^2}-1\right) =-\frac{2(2+\alpha ^2)\zeta _1^2(4-\zeta _1^2)}{9(2+\zeta _1^2)}<0, \end{aligned}$$

we see that the inequality

$$\begin{aligned} \alpha ^2\zeta _1^2=B^2<\min \left\{ 4(1+|C|)^2,-4AC\left( \frac{1}{C^2}-1\right) \right\} =-\frac{2(2+\alpha ^2)\zeta _1^2(4-\zeta _1^2)}{9(2+\zeta _1^2)} \end{aligned}$$

is false for \(\zeta _1\in (0,1).\)

C3. Next observe that the inequality

$$\begin{aligned} |C|(|B|+4|A|)-|AB|=\frac{2+\zeta _1^2}{3\zeta _1}\left( \alpha \zeta _1+\frac{2(2+\alpha ^2)\zeta _1^3}{3(1-\zeta _1^2)}\right) -\frac{(2+\alpha ^2)\alpha \zeta _1^4}{6(1-\zeta _1^2)}\le 0 \end{aligned}$$

is equivalent to

$$\begin{aligned} \phi (\zeta _1^2)\le 0, \end{aligned}$$
(32)

where

$$\begin{aligned} \phi (t):=(-3\alpha ^3+4\alpha ^2-12\alpha +8)t^2+(8\alpha ^2-6\alpha +16)t+12\alpha ,\quad t\in (0,1). \end{aligned}$$

Note that \(8\alpha ^2-6\alpha +16>0\) for \(\alpha \in (0,1]\) and \(-3\alpha ^3+4\alpha ^2-12\alpha +8\ge 0\) for \(\alpha \in (0,\alpha _0],\) where \(\alpha _0\approx 0.74858\dots .\) Thus for \(\alpha \in (0,\alpha _0]\) inequality (32) is evidently false. If \(\alpha \in (\alpha _0,1]\), then \(\varDelta :=4\left( 52\alpha ^4-72\alpha ^3+217\alpha ^2-144\alpha +64\right) >0,\) and so we consider

$$\begin{aligned} t_{1,2}:=\frac{-4\alpha ^2+3\alpha -8\mp \sqrt{52\alpha ^4-72\alpha ^3+217\alpha ^2-144\alpha +64}}{-3\alpha ^3+4\alpha ^2-12\alpha +8}. \end{aligned}$$

Observe now that \(t_1>1.\) Indeed, the inequality \(t_1>1\) is equivalent to the evidently true inequality

$$\begin{aligned} \sqrt{52\alpha ^4-72\alpha ^3+217\alpha ^2-144\alpha +64}>3\alpha ^3-8\alpha ^2+15\alpha -16, \end{aligned}$$

since the right hand side is negative for all \(\alpha \in (\alpha _0,1].\) Further, \(t_2<0.\) Indeed this inequality is equivalent to \(-3\alpha ^3+4\alpha ^2-12\alpha +8<0\) which clearly holds for \(\alpha \in (\alpha _0,1].\) Thus we deduce that the inequality (32) is false.

C4. Note next that the inequality

$$\begin{aligned} |AB|-|C|(|B|-4|A|)=\frac{(2+\alpha ^2)\alpha \zeta _1^4}{6(1-\zeta _1^2)}-\frac{2+\zeta _1^2}{3\zeta _1}\left( \alpha \zeta _1-\frac{2(2+\alpha ^2)\zeta _1^3}{3(1-\zeta _1^2)}\right) \le 0 \end{aligned}$$
(33)

is equivalent to

$$\begin{aligned} \delta (\zeta _1^2)\le 0, \end{aligned}$$
(34)

where

$$\begin{aligned} \delta (s):=(3\alpha ^3+4\alpha ^2+12\alpha +8)s^2+2(4\alpha ^2+3\alpha +8)s-12\alpha ,\quad s\in (0,1), \end{aligned}$$

so that \(\varDelta :=4\left( 52\alpha ^4+72\alpha ^3+217\alpha ^2+144\alpha +64\right) >0\) for \(\alpha \in (0,1].\) Therefore \(s_1<0,\) where

$$\begin{aligned} s_{1,2}:=\frac{-(4\alpha ^2+3\alpha +8)\mp \sqrt{52\alpha ^4+72\alpha ^3+217\alpha ^2+144\alpha +64}}{3\alpha ^3+4\alpha ^2+12\alpha +8}. \end{aligned}$$

Moreover \(0<s_2<1\) holds. Indeed, both inequalities \(s_2>0\) and \(s_2<1\) are equivalent to the evidently true inequalities

$$\begin{aligned} 36\alpha ^4+48\alpha ^3+144\alpha ^2+96\alpha >0, \end{aligned}$$

and

$$\begin{aligned} 9\alpha ^6+48\alpha ^5+102\alpha ^4+264\alpha ^3+264\alpha ^2+336\alpha +192>0, \end{aligned}$$

respectively. Thus (34), and so (33) is valid only when

$$\begin{aligned} 0<\zeta _1\le \sqrt{s_2}=:\zeta '. \end{aligned}$$

Then by (31) and Lemma 2,

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|\le \frac{1}{24}\alpha ^2\zeta _1(1-\zeta _1^2)(-|A|+|B|+|C|)=\varphi (\zeta _1), \end{aligned}$$

where

$$\begin{aligned} \varphi (u):=\frac{\alpha ^2}{144}\left[ -(\alpha ^2+6\alpha +4)u^4+2(3\alpha -1)u^2+4\right] ,\quad 0\le u\le \zeta '. \end{aligned}$$

Since

$$\begin{aligned} \varphi '(u)=-\frac{\alpha ^2u}{36}\left[ (\alpha ^2+6\alpha +4)u^2+1-3\alpha \right] ,\quad 0<u<\zeta ', \end{aligned}$$

we see that for \(0<\alpha \le 1/3,\) the function \(\varphi \) decreases and so

$$\begin{aligned} \varphi (u)\le \varphi (0)=\frac{\alpha ^2}{36},\quad 0\le u\le \zeta '. \end{aligned}$$
(35)

In the case \(1/3<\alpha \le 1,\)

$$\begin{aligned} 0<u_0:=\sqrt{\frac{3\alpha -1}{\alpha ^2+6\alpha +4}}<\zeta _1 \end{aligned}$$
(36)

is a unique critical point of \(\varphi \), which is a maximum.

It remains therefore to establish the second inequality, i.e., \(u_0<\zeta _1,\) which is equivalent to

$$\begin{aligned} \begin{aligned} r(\alpha ):=&117\alpha ^8+240\alpha ^7-149\alpha ^6-1212\alpha ^5-4344\alpha ^4\\&-6288\alpha ^3-4464\alpha ^2-1920\alpha -448<0,\quad \alpha \in (0,1], \end{aligned} \end{aligned}$$

and since

$$\begin{aligned} r(\alpha )\le -149\alpha ^6-1212\alpha ^5-4344\alpha ^4-6288\alpha ^3-4464\alpha ^2-1920\alpha -91<0 \end{aligned}$$

for \(\alpha \in (0,1],\) we deduce that \(u_0<\zeta _1.\)

Thus for \(1/3<\alpha \le 1,\) we have

$$\begin{aligned} \varphi (u)\le \varphi (u_0)=\dfrac{\alpha ^2(17+18\alpha +13\alpha ^2)}{144(4+6\alpha +\alpha ^2)},\quad 0\le u\le \zeta '. \end{aligned}$$
(37)

C5. We now consider the last case in Lemma 2, which in view of C4 holds for \(\zeta '<\zeta _1<1.\) Then by (31),

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|\le \frac{\alpha ^2}{24}\zeta _1(1-\zeta _1^2)(|C|+|A|)\sqrt{1-\dfrac{B^2}{4AC}}=\psi (\zeta _1)\le \psi (\zeta '), \end{aligned}$$
(38)

where

$$\begin{aligned} \psi (u):=\frac{\alpha ^2}{144}(\alpha ^2u^4-2u^2+4)\sqrt{\frac{13\alpha ^2+8+(4-7\alpha ^2)u^2}{2(2+\alpha ^2)(2+u^2)}},\quad \zeta '\le u\le 1. \end{aligned}$$

To show that the last inequality in (38) holds, observe that \(\psi \) is decreasing. Indeed, by a simple computation,

$$\begin{aligned} \begin{aligned} \psi '(u)&=-\frac{\alpha ^2x}{288(2+\alpha ^2)(2+x^2)^2}\sqrt{\frac{2(2+\alpha ^2)(2+u^2)}{13\alpha ^2+8+(4-7\alpha ^2)u^2}}\\&\quad \times \left[ 4(1-\alpha ^2u^2)(2+u^2)\left( 13\alpha ^2+8+(4-7\alpha ^2)u^2\right) \right. \\&\quad \left. +27\alpha ^2(\alpha ^2u^4-2u^2+4)\right] , \end{aligned} \end{aligned}$$

for \(\zeta '<u<1.\) Note that

$$\begin{aligned} 13\alpha ^2+8+(4-7\alpha ^2)u^2>0,\quad \zeta '<u<1, \end{aligned}$$
(39)

which is clearly true for \(0<\alpha \le 2/\sqrt{7}.\) If \(2/\sqrt{7}<\alpha \le 1,\) then

$$\begin{aligned} 13\alpha ^2+8+(4-7\alpha ^2)u^2=13\alpha ^2+8-(7\alpha ^2-4)u^2\ge 6\alpha ^2+12>0 \end{aligned}$$

for \(\zeta '<u<1.\) Further

$$\begin{aligned} \alpha ^2u^4-2u^2+4\ge \alpha ^2u^4+2>0,\quad \zeta '<u<1. \end{aligned}$$
(40)

Thus from (39) and (40) it follows that \(\psi '(u)<0\) for \(\zeta '<u<1,\) so \(\psi \) decreases and hence

$$\begin{aligned} \psi (u)\le \psi (\zeta '),\quad \zeta '\le u\le 1. \end{aligned}$$
(41)

Simple but tedious computations show that

$$\begin{aligned} \varphi (\zeta ')=\psi (\zeta '), \end{aligned}$$

and so from (41), (35) and (37) we deduce that for \(\alpha \in (0,1/3],\)

$$\begin{aligned} \psi (u)\le \frac{\alpha ^2}{36},\quad \zeta '\le u\le 1, \end{aligned}$$

and for \(\alpha \in (1/3,1],\)

$$\begin{aligned} \psi (u)\le \varphi (u_0),\quad \zeta '\le u\le 1. \end{aligned}$$

D. It remains to compare the bounds in (29), (30), (35) and (37). The inequality

$$\begin{aligned} \frac{\alpha ^2(2+\alpha ^2)}{144}\le \frac{\alpha ^2}{36},\quad \alpha \in (0,1], \end{aligned}$$

is trivial, and the inequality

$$\begin{aligned} \frac{\alpha ^2(2+\alpha ^2)}{144}\le \dfrac{\alpha ^2(17+18\alpha +13\alpha ^2)}{144(4+6\alpha +\alpha ^2)},\quad \alpha \in (1/3,1], \end{aligned}$$

is equivalent to

$$\begin{aligned} -\alpha ^4-6\alpha ^3+7\alpha ^2+6\alpha +9\le 0,\quad \alpha \in (1/3,1], \end{aligned}$$

which is clearly true, and the inequality

$$\begin{aligned} \frac{\alpha ^2}{36}\le \dfrac{\alpha ^2(17+18\alpha +13\alpha ^2)}{144(4+6\alpha +\alpha ^2)},\quad \alpha \in (1/3,1], \end{aligned}$$

is equivalent to the evidently true inequality \((3\alpha -1)^2\ge 0.\)

Thus summarizing the results in parts A-C we see that (25) is established.

We finally show that the inequalities in (25) are sharp. When \(\alpha \in (0,1/3],\) equality holds for the function \(f\in \mathcal A\) given by (26) with p given by (24). In this case \(c_1=c_3=0\) and \(c_2=2,\) so by (27), \(a_2=a_4=0\) and \(a_3=\alpha /3\) and therefore \(\gamma _1=\gamma _3=0\) and \(\gamma _2=\alpha /6.\)

When \(\alpha \in (1/3,1],\) equality holds for the function \(f\in \mathcal A\) given by (26), where p is given by (12) with \(\zeta _1=u_0=:\tau ,\) and \(u_0\) given by (36), \(\zeta _2=-1\) and \(\zeta _3=1,\) i.e.,

$$\begin{aligned} p(z):=\frac{1-z^2}{1-2\tau z+z^2},\quad z\in \mathbb D, \end{aligned}$$

which completes the proof of the theorem. \(\square \)

For \(\alpha =1\) we obtain the sharp inequality for the class \(\mathcal S^c\) of convex functions [10].

Corollary 2

If \(f\in \mathcal S^c,\) then

$$\begin{aligned} |\gamma _1\gamma _3-\gamma _2^2|\le \frac{1}{33}. \end{aligned}$$

The inequality is sharp.