Skip to main content
Log in

The Nonconvex Second-Order Cone: Algebraic Structure Toward Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper explores the nonconvex second-order cone as a nonconvex conic extension of the known convex second-order cone in optimization, as well as a higher-dimensional conic extension of the known causality cone in relativity. The nonconvex second-order cone can be used to reformulate nonconvex quadratic programming and nonconvex quadratically constrained quadratic program in conic format. The cone can also arise in real-world applications, such as facility location problems in optimization when some existing facilities are more likely to be closer to new facilities than other existing facilities. We define notions of the algebraic structure of the nonconvex second-order cone and show that its ambient space is commutative and power-associative, wherein elements always have real eigenvalues; this is remarkable because it is not the case for arbitrary Jordan algebras. We will also find that the ambient space of this nonconvex cone is rank-independent of its dimension; this is also notable because it is not the case for algebras of arbitrary convex cones. What is more noteworthy is that we prove that the nonconvex second-order cone equals the cone of squares of its ambient space; this is not the case for all non-Euclidean Jordan algebras. Finally, numerous algebraic properties that already exist in the framework of the convex second-order cone are generalized to the framework of the nonconvex second-order cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  MathSciNet  Google Scholar 

  2. Alzalg, B.: Decomposition-based interior point methods for stochastic quadratic second-order cone programming. Appl. Math. Comput. 249, 1–18 (2014)

    MathSciNet  Google Scholar 

  3. Alzalg, B.: The Jordan algebraic structure of the circular cone. Oper. Matrices 11, 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  4. Alzalg, B.: Primal interior-point decomposition algorithms for two-stage stochastic extended second-order cone programming. Optimization 67, 2291–2323 (2018)

    Article  MathSciNet  Google Scholar 

  5. Alzalg, B., Alioui, H.: Applications of stochastic mixed-integer second-order cone optimization. IEEE Access 10, 3522–3547 (2022)

    Article  Google Scholar 

  6. Alzalg, B., Pirhaji, M.: Elliptic cone optimization and primal-dual path-following algorithms. Optimization 66, 2245–2274 (2017)

    Article  MathSciNet  Google Scholar 

  7. Alzalg, B.M.: Stochastic second-order cone programming: applications models. Appl. Math. Model. 36, 5122–5134 (2012)

    Article  MathSciNet  Google Scholar 

  8. Alzalg, B., Benakkouche, L.: Functions associated with the nonconvex second-order cone. Submitted for publication (2023)

  9. Benson, H.Y., Shanno, D.F.: Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts. Comput. Optim. Appl. 40, 143–189 (2008)

    Article  MathSciNet  Google Scholar 

  10. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Voronoi diagrams. In: Computational Geometry. Springer, Berlin, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Bourbaki, N.: Algèbre: Chapitres 1 à 3. Springer (2007)

    Book  Google Scholar 

  12. Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  13. Chen, J.-Sh.: The convex and monotone functions associated with second-order cone. Optimization 55, 363–385 (2006)

    Article  MathSciNet  Google Scholar 

  14. Correa, R.: A global algorithm for nonlinear semidefinite programming. SIAM J. Optim. 1, 303–318 (2004)

    Article  MathSciNet  Google Scholar 

  15. Curtis, F.E., Schenk, O., Wächter, A.: An interior-point algorithm for large-scale nonlinear optimization with inexact step computations. SIAM J. Sci. Comput. 32, 3447–3475 (2010)

    Article  MathSciNet  Google Scholar 

  16. Faraut, J., Gindikin, S.: Pseudo-Hermitian symmetric spaces of tube type. In: Memory of Jozef D’atri (ed.): Topics in Geometry, pp 123–154. Springer (1996)

  17. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. The Clarendon Press, Oxford University Press, New York (1994)

    Book  Google Scholar 

  18. Forsgren, A., Gill, Ph.E.: Primal-dual interior methods for nonconvex nonlinear programming. SIAM J. Optim. 8, 1132–1152 (1998)

    Article  MathSciNet  Google Scholar 

  19. Freund, R.W., Jarre, F., Vogelbusch, Ch.H.: Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling. Math. Program. 109, 581–611 (2007)

    Article  MathSciNet  Google Scholar 

  20. Gao, Y., Nemeth, S.Z., Sznajder, R.: The monotone extended second-order cone and mixed complementarity problems. J. Optim. Theory Appl. 193, 381–407 (2022)

    Article  MathSciNet  Google Scholar 

  21. Garcés, R., Gómez, W., Jarre, F.: A self-concordance property for nonconvex semidefinite programming. Math. Oper. Res. 74, 77–92 (2011)

    Article  MathSciNet  Google Scholar 

  22. Gershtein, S.S., Logunov, A.A., Mestvirishvili, M.A.: Gravitational waves in the relativistic theory of gravity. Theor. Math. Phys. 160, 1096–1100 (2009)

    Article  Google Scholar 

  23. Gindikin, S.G.: Analysis inhomogeneous domains. Russ. Math. Surv. 19, 1–89 (1964)

    Article  Google Scholar 

  24. Horn, R.A., Johnson, Ch.R.: Matrix Analysis. Cambridge University Press (1985)

    Book  Google Scholar 

  25. Kizilay, A., Yakut, A.T.: Inextensible flows of space curves according to a new orthogonal frame with curvature in \({\mathbb{E} }_{1}^{3}\). Int. Electron. J. Geom. 16, 577–593 (2023)

    Article  MathSciNet  Google Scholar 

  26. Koecher, M.: The Minnesota Notes on Jordan Algebras and Their Applications. Springer (1999)

    Book  Google Scholar 

  27. Minguzzi, E.: Lorentzian manifolds properly isometrically embeddable in Minkowski spacetime. Lett. Math. Phys. 113, 67 (2023)

    Article  MathSciNet  Google Scholar 

  28. Moradi, E., Bidkhori, M.: Single Facility Location Problem. In: Zanjirani Farahani, R., Hekmatfar, M. (eds.) Facility Location. Contributions to Management Science. Physica, Heidelberg (2009)

  29. Németh, S.Z.: Zhang, G,: Extended Lorentz cones and mixed complementarity problems. J. Glob. Optim. 62, 443–457 (2015)

  30. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelpha (1994)

    Book  Google Scholar 

  31. Neuenhofen, M.: Weakly polynomial efficient minimization of a non-convex quadratic function with logarithmic barriers in a trust-region. arXiv preprint arXiv:1806.06936 (2018)

  32. Qi, H.: Local duality of nonlinear semidefinite programming. Math. Oper. Res. 34, 124–141 (2009)

    Article  MathSciNet  Google Scholar 

  33. Renardy, M.: Singular value decomposition in Minkowski space. Linear Algebra Appl. 236, 53–58 (1996)

    Article  MathSciNet  Google Scholar 

  34. Schmieta, S.H., Alizadeh, F.: Extension of primal-dual interior point algorithms to symmetric cones. Math. Program. 96, 409–438 (2003)

    Article  MathSciNet  Google Scholar 

  35. Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods. Math. Program. 87, 303–316 (2000)

    Article  MathSciNet  Google Scholar 

  36. Sun, D.: The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res. 31, 761–776 (2006)

    Article  MathSciNet  Google Scholar 

  37. Sun, W., Li, Ch., Sampaio, R.J.B.: On duality theory for non-convex semidefinite programming. Ann. Oper. Res. 186, 331–343 (2011)

    Article  MathSciNet  Google Scholar 

  38. Stein, H.: On Einstein–Minkowski space-time. J. Philos. 65(1), 5–23 (1968)

    Article  Google Scholar 

  39. Todd, M.J.: Semidefinite Optimization. Cambridge University Press, Acta Numerica (2001)

    Book  Google Scholar 

  40. Tuy, H.: Nonconvex quadratic programming. In Memory of Jozef D’atri (ed.): Convex Analysis and Global Optimization, pp 337–390. Springer (2016)

  41. Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231–252 (1999)

    Article  MathSciNet  Google Scholar 

  42. Witkowski, O., Doctor, T., Solomonova, E., Duane, B., Levin, M.: Towards an ethics of autopoietic technology: stress, care, and intelligence. Biosystems 231, 104964 (2023)

    Article  Google Scholar 

  43. Zhang, L., Li, Y., Wu, J.: Nonlinear rescaling Lagrangians for nonconvex semidefinite programming. Optim. 63, 899–920 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous referees for their careful reading of this paper and their suggestions. These comments helped to significantly improve the presentation of this paper. In addition, we express our appreciation to one of the referees for pointing out a small gap in one of the proofs in an earlier draft that resulted in an incomplete proof of Lemma 4.2. This has now been addressed and completed in an updated version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baha Alzalg.

Additional information

Communicated by Alper Yildirim.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzalg, B., Benakkouche, L. The Nonconvex Second-Order Cone: Algebraic Structure Toward Optimization. J Optim Theory Appl (2024). https://doi.org/10.1007/s10957-024-02406-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10957-024-02406-5

Keywords

Mathematics Subject Classification

Navigation