Skip to main content
Log in

Structural, Optical, Electrical, and Nanomechanical Properties of F-Doped Sno2 Fabricated by Ultrasonic Spray Pyrolysis

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Transparent conductive oxides (TCOs) are in high demand by optoelectronic devices such as light-emitting diodes, phototransistors, touchscreens, solar cells, and low-emissivity windows. Tin-doped indium oxide (ITO) material is the most predominant in the market and is utilised among the various TCO materials. However, the lack of raw materials and the high cost of indium materials have necessitated the exploration of cost-effective TCOs that can serve as viable alternatives without compromising the desired optical and electrical properties. Tin oxide (SnO2) films emerge as a promising candidate, offering several benefits, including abundant material sources, inexpensiveness, and non-toxicity. It anticipates producing a higher visible transmittance, excellent electrical conductivity, and good mechanical properties compared to ITO. Moreover, SnO2 can increase its electrical conductivity by introducing representative dopant elements such as Sb, and F. However, structural, optical, and mechanical properties can affect additional dopant elements. Herein, we have demonstrated fluorine-doped tin oxide (FTO) thin films as a function of F dopant concentration by ultrasonic spray pyrolysis. The FTO thin films achieved excellent properties for FTO coatings such as polycrystalline structure, electrical conductivity (ρ = 9.1 × 10–5 Ω cm), transmittance in the visible region (average visible transmittance up to 85.0%, with peak values of 96.5%) with a wider band gap between 3.80 and 4.28 eV. The increasing elastic modulus and hardness are related to significant grain boundaries, reaching the highest values of 154.5 ± 18.6 and 12.3 ± 3.6 GPa, respectively. The measured interface adhesion between SnO2/Si substrate is 9.32 J/m2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Way, A., et al.: Fluorine doped tin oxide as an alternative of indium tin oxide for bottom electrode of semi-transparent organic photovoltaic devices. AIP Adv. 9(8), 085220–085220–5 (2009).

  2. Yu, W., et al.: Etching characteristics and surface properties of fluorine-doped tin oxide thin films under CF4-based plasma treatment. Appl. Phys. A Mater. Sci. Process. 128(10) (2022).

  3. Degler, D., et al.: Structure and chemistry of surface-doped Pt:SnO2 gas sensing materials. RSC Adv. 6(34), 28149–28155 (2016)

    Article  CAS  Google Scholar 

  4. Bandara, T., et al.: Transparent and conductive F-Doped SnO2 nanostructured thin films by sequential nebulizer spray pyrolysis. MRS Adv. 6, 417–421 (2021)

    Article  CAS  Google Scholar 

  5. Xiao, L., et al.: Facile fabrication of F-doped SnO2 nanomaterials for improved photocatalytic activity. Coatings (Basel) 12(6), 795 (2022)

    Article  CAS  Google Scholar 

  6. Hu, Z. et al.: Highly efficient organic photovoltaic devices using F-doped SnO2 anodes. Appl. Phys. Lett. 98(12) (2011).

  7. Indira Gandhi, T. et al.: Electrical and optical properties of Co2+:SnO2 thin films deposited by spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 27(2), 1662–1669 (2016).

  8. Kavan, L., Steier, L., Grätzel, M.: Ultrathin buffer layers of SnO2 by atomic layer deposition: perfect blocking function and thermal stability. J. Phys. Chem. C 121(1), 342–350 (2017)

    Article  CAS  Google Scholar 

  9. Viet Huong, N., et al.: Atmospheric atomic layer deposition of SnO2 thin films with tin(ii) acetylacetonate and water. Dalton Trans. Int. J. Inorgan. Chem. 51(24), 9278–9290 (2022)

    Google Scholar 

  10. Abdel-Galil, A., Moussa, N.L., Yahia, I.S.: Synthesis and optical characterization of nanocrystalline fluorine-doped tin oxide films: conductive window layer for optoelectronic applications. Appl. Phys. A. Mater. Sci. Process. 127(6) (2021).

  11. Kyesmen, P.I., Nombona, N., Diale, M.: Influence of coating techniques on the optical and structural properties of hematite thin films. Surfaces Interfaces 17, 100384 (2019)

    Article  CAS  Google Scholar 

  12. Rana, R., et al.: Study of conducting ITO thin film deposition on flexible polyimide substrate using spray pyrolysis. J. Nanostruct. Chem. 6(1), 65–74 (2016)

    Article  CAS  Google Scholar 

  13. Allag, N., et al.: Effect of precursors on structural, optical and surface properties of ZnO thin film prepared by spray pyrolysis method: efficient removal of Cu (II) from wastewater. Transition Metal Chem., pp 1–13 (2023).

  14. Culu, A., Kaya, I.C., Sonmezoglu, S.: Spray-pyrolyzed Tantalium-doped TiO2 compact electron transport layer for UV-photostable planar Perovskite solar cells exceeding 20% efficiency. ACS Appl. Energy Mater. 5(3), 3454–3462 (2022)

    Article  CAS  Google Scholar 

  15. Ramanathan, R., et al.: Enhanced sensing performance of Sb-doped nanometer-thin SnO2 films toward CO and NH3 gases. ACS Appl. Nano Mater. 6(9), 7873–7886 (2023)

    Article  CAS  Google Scholar 

  16. Zeng, K., et al.: Investigation of mechanical properties of transparent conducting oxide thin films. Thin Solid Films 443(1), 60–65 (2003)

    Article  CAS  Google Scholar 

  17. Tuyen, L.T.C., et al.: Nanomechanical and material properties of fluorine-doped tin oxide thin films prepared by ultrasonic spray pyrolysis: effects of F-doping. Materials (Basel) 12(10), 1665 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, J. et al.: Ultrasonic spray pyrolysis of antimony-doped tin oxide transparent conductive coatings. Adv. Mater. Interfaces (2020).

  19. Kim, J, et al.: Transparent electrodes based on spray coated fluorine-doped tin oxide with enhanced optical, electrical and mechanical properties. J. Mater. Chem. C Mater. Opt. Electron. Devices. 8(41), 14531–14539 (2020).

    Article  CAS  Google Scholar 

  20. Kim, J.-W., et al.: Characterization and observation of Cu-Cu Thermo-Compression Bonding using 4-point bending test system. J. Microelectron. Packag. Soc. 18(4), 11–18 (2011)

    Google Scholar 

  21. Kim, J.-W., et al.: Improvement of wafer-level Cu-to-Cu bonding quality using wet chemical pretreatment. J. Nanosci. Nanotechnol. 12(4), 3577–3581 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. Harrington, G.F., Santiso, J.: Back-to-Basics tutorial: X-ray diffraction of thin films. J. Electroceram. 47(4), 141–163 (2021)

    Article  CAS  Google Scholar 

  23. Kendall, O., et al.: Fluorine-doped tin oxide colloidal nanocrystals. Nanomaterials (Basel, Switzerland) 10(5), 863 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moholkar, A.V., et al.: Effect of concentration of SnCl4 on sprayed fluorine doped tin oxide thin films. J. Alloy. Compd. 455(1–2), 440–446 (2008)

    Article  CAS  Google Scholar 

  25. Jaewon, K.: Deposition of transparent conducting oxide coatings via ultrasonic spray pyrolysis. RMIT University.

  26. Seo, J.-S., et al.: Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci. Rep. 3(1), 2085–2085 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chang, J., et al.: Solution processed F doped ZnO (ZnO:F) for thin film transistors and improved stability through co-doping with alkali metals. J. Mater. Chem. C. Mater. Opt. Electronic Devices. 3(8), 1787–1793 (2015).

  28. Moholkar, A.V., et al.: Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films. Appl. Surf. Sci. 255(23), 9358–9364 (2009)

    Article  CAS  Google Scholar 

  29. Schuh, C.A.: Nanoindentation studies of materials. Mater. Today (Kidlington, England) 9(5), 32–40 (2006)

    Article  CAS  Google Scholar 

  30. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (2011)

    Article  Google Scholar 

  31. Nagy, P.M., et al.: Mechanical relaxation of SnO2 protective layers evaluated by nanoindentation and AFM. Mater. Manuf. Processes 20(1), 115–122 (2005)

    Article  CAS  Google Scholar 

  32. Suryanarayana, C., et al.: Grain size effects in nanocrystalline materials. J. Mater. Res. 7(8), 2114–2118 (1992)

    Article  CAS  Google Scholar 

  33. Cao, H.S., et al.: Determination of elastic properties of consolidated nanocrystalline alloys iron–copper by means of acoustic echography and interferometry. Scripta Mater. 48(5), 531–537 (2003)

    Article  CAS  Google Scholar 

  34. Chandiran, E., et al.: An inverse Hall-Petch relationship during room-temperature compression of commercially pure magnesium. J. Alloy. Compd. 930, 167443 (2023)

    Article  CAS  Google Scholar 

  35. Chaim, R., Hefetz, M.: Effect of grain size on elastic modulus and hardness of nanocrystalline ZrO2-3 wt% Y2O3 ceramic. J. Mater. Sci. 39(9), 3057–3061 (2004)

    Article  CAS  Google Scholar 

  36. Zhang, X., Aifantis, K.E.: Interpreting the softening of nanomaterials through gradient plasticity. J. Mater. Res. 26(11), 1399–1405 (2011)

    Article  CAS  Google Scholar 

  37. Grabco, D., et al.: Elastoplastic response of TCO/Si coated systems to local loading. Chapter in book. Horizons in World Physics. 277.

  38. Andideh, E. et al. Interfacial adhesion of copper-low k interconnects. New York: IEEE.

  39. Ou, X., Janzen, A.F.: Silicon−fluorine and silicon−carbon bond cleavage in organofluorosilicates: a molecular orbital study. Inorg. Chem. 36(3), 392–395 (1997)

    Article  CAS  Google Scholar 

  40. Petkowski, J.J., Bains, W., Seager, S.: On the potential of silicon as a building block for life. Life (Basel, Switzerland) 10(6), 84 (2020)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the facilities and the technical assistance of the RMIT University’s Microscopy and Microanalysis Facility (RMMF). We gratefully acknowledge the collaboration with Associate Professor Enrico Della Gaspera for the great support and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaewon Kim or Young-Bae Park.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kim, G. & Park, YB. Structural, Optical, Electrical, and Nanomechanical Properties of F-Doped Sno2 Fabricated by Ultrasonic Spray Pyrolysis. Electron. Mater. Lett. (2024). https://doi.org/10.1007/s13391-024-00489-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-024-00489-w

Keywords

Navigation