Skip to main content

Advertisement

Log in

Surface-controlled Nb2O5 nanoparticle networks for fast Li transport and storage

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hybrid supercapacitors are successfully introduced to reduce the gap between high-capacity battery electrodes and high-power capacitor electrodes in case of electrochemical energy storage devices. Niobium pentoxide (Nb2O5) has attracted great interest for hybrid supercapacitors because of its moderate capacity and excellent cycle performance. However, its low electronic conductivity is still a major problem. Carbon is usually incorporated to address this limitation. Here, we report the Nb2O5 nanoparticle networks to facilitate electronic transport via continuous connection of materials. Additionally, the high surface area of the nanoparticles is maintained. The Nb2O5 nanoparticle network was synthesized using a simple solvothermal reaction in organic media. The materials characterization was performed using X-ray diffraction analysis, and scanning and transmission electron microscopies. The charge storage mechanism of the synthesized Nb2O5 material was investigated by cyclic voltammetry. In galvanostatic charge–discharge tests, the synthesized Nb2O5 nanoparticle network electrode exhibited stable cycle performance and remarkable rate capability without carbon incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270

    Article  CAS  Google Scholar 

  2. Amatucci GG, Badway F, Du Pasquier A, Zheng T (2001) An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 148:A930–A939

    Article  CAS  Google Scholar 

  3. Du Pasquier A, Plitz I, Menocal S, Amatucci G (2003) A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J Power Sources 115:171–178

    Article  Google Scholar 

  4. Cheng L, Liu H-J, Zhang J-J, Xiong H-M, Xia Y-Y (2006) Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors. J Electrochem Soc 153:A1472–A1477

    Article  CAS  Google Scholar 

  5. Naoi K, Naoi W, Aoyagi S, J-i Miyamoto, Kamino T (2013) New generation “nanohybrid supercapacitor”. Acc Chem Res 46:1075–1083

    Article  CAS  Google Scholar 

  6. Kim J-H, Kim J-S, Lim Y-G, Lee J-G, Kim Y-J (2011) Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitors. J Power Sources 196:10490–10495

    Article  CAS  Google Scholar 

  7. Kim J, Young C, Lee J et al (2017) Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. J Mater Chem A 5:15065–15072

    Article  CAS  Google Scholar 

  8. Brezesinski K, Wang J, Haetge J et al (2010) Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J Am Chem Soc 132:6982–6990

    Article  CAS  Google Scholar 

  9. Augustyn V, Come J, Lowe MA et al (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522

    Article  CAS  Google Scholar 

  10. Lubimtsev AA, Kent PRC, Sumpter BG, Ganesh P (2013) Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals. J Mater Chem A 1:14951–14956

    Article  CAS  Google Scholar 

  11. Viet AL, Reddy MV, Jose R, Chowdari BVR, Ramakrishna S (2010) Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J Phys Chem C 114:664–671

    Article  Google Scholar 

  12. Wen H, Liu Z, Wang J, Yang Q, Li Y, Yu J (2011) Facile synthesis of Nb2O5 nanorod array films and their electrochemical properties. Appl Surf Sci 257:10084–10088

    Article  CAS  Google Scholar 

  13. Wang X, Li G, Chen Z et al (2011) High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv Energy Mater 1:1089–1093

    Article  CAS  Google Scholar 

  14. Kong L, Zhang C, Zhang S et al (2014) High-power and high-energy asymmetric supercapacitors based on Li+-intercalation into a T–Nb2O5/graphene pseudocapacitive electrode. J Mater Chem A 2:17962–17970

    Article  CAS  Google Scholar 

  15. Kong L, Zhang C, Wang J, Qiao W, Ling L, Long D (2015) Free-standing T–Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 9:11200–11208

    Article  CAS  Google Scholar 

  16. Lim E, Kim H, Jo C et al (2014) Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano 8:8968–8978

    Article  CAS  Google Scholar 

  17. Lim E, Jo C, Kim H et al (2015) Facile synthesis of Nb2O5@carbon core–shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9:7497–7505

    Article  CAS  Google Scholar 

  18. Shi C, Xiang K, Zhu Y, Chen X, Zhou W, Chen H (2017) Nb2O5 nanospheres/surface-modified graphene composites as superior anode materials in lithium ion batteries. Ceram Int 43:6232–6238

    Article  CAS  Google Scholar 

  19. Kang SH, Park C-M, Lee J, Kim J-H (2015) Electrochemical lithium storage kinetics of self-organized nanochannel niobium oxide electrodes. J Electroanal Chem 746:45–50

    Article  CAS  Google Scholar 

  20. Kim K, Kim M-S, Cha P-R, Kang SH, Kim J-H (2016) Structural modification of self-organized nanoporous niobium oxide via hydrogen treatment. Chem Mater 28:1453–1461

    Article  CAS  Google Scholar 

  21. Yan L, Rui X, Chen G, Xu W, Zou G, Luo H (2016) Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale 8:8443–8465

    Article  CAS  Google Scholar 

  22. Zhai J, Wu Y, Zhao X, Yang Q (2017) Facile preparation of flower-like hierarchical Nb2O5 microspheres self-assembled by nanorod for high-power anodes in advanced hybrid supercapacitor. J Alloy Compd 715:275–283

    Article  CAS  Google Scholar 

  23. Kong L, Cao X, Wang J, Qiao W, Ling L, Long D (2016) Revisiting Li+ intercalation into various crystalline phases of Nb2O5 anchored on graphene sheets as pseudocapacitive electrodes. J Power Sources 309:42–49

    Article  CAS  Google Scholar 

  24. Kim K, Woo S-G, Jo YN, Lee J, Kim J-H (2017) Niobium oxide nanoparticle core–amorphous carbon shell structure for fast reversible lithium storage. Electrochim Acta 240:316–322

    Article  CAS  Google Scholar 

  25. Zhang S, Wu J, Wang J, Qiao W, Long D, Ling L (2018) Constructing T–Nb2O5@Carbon hollow core-shell nanostructures for high-rate hybrid supercapacitor. J Power Sources 396:88–94

    Article  CAS  Google Scholar 

  26. Zhang J, Chen H, Sun X et al (2017) High intercalation pseudocapacitance of free-standing T–Nb2O5 nanowires@carbon cloth hybrid supercapacitor electrodes. J Electrochem Soc 164:A820–A825

    Article  CAS  Google Scholar 

  27. Qinglin D, Mengjiao L, Junyong W, Kai J, Zhigao H, Junhao C (2018) Free-anchored Nb2O5@graphene networks for ultrafast-stable lithium storage. Nanotechnology 29:185401

    Article  Google Scholar 

  28. Aegerter MA (2001) Sol–gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Sol Energy Mater Sol Cells 68:401–422

    Article  CAS  Google Scholar 

  29. Parker AJ (1969) Protic-dipolar aprotic solvent effects on rates of bimolecular reactions. Chem Rev 69:1–32

    Article  CAS  Google Scholar 

  30. Liang X, Wang X, Zhuang J, Chen Y, Wang D, Li Y (2006) Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv Funct Mater 16:1805–1813

    Article  CAS  Google Scholar 

  31. Duan X, Mei L, Ma J, Li Q, Wang T, Zheng W (2012) Facet-induced formation of hematite mesocrystals with improved lithium storage properties. Chem Commun 48:12204–12206

    Article  CAS  Google Scholar 

  32. Pawar RC, Um JH, Kang S, Yoon W-S, Choe H, Lee CS (2017) Solvent-polarity-induced hematite (α-Fe2O3) nanostructures for lithium-ion battery and photoelectrochemical applications. Electrochim Acta 245:643–653

    Article  CAS  Google Scholar 

  33. Lindström H, Södergren S, Solbrand A et al (1997) Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101:7717–7722

    Article  Google Scholar 

  34. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931

    Article  CAS  Google Scholar 

  35. Zhu K, Wang Q, Kim J-H, Pesaran AA, Frank AJ (2012) Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays. J Phys Chem C 116:11895–11899

    Article  CAS  Google Scholar 

  36. Kim J-H, Zhu K, Kim JY, Frank AJ (2013) Tailoring oriented TiO2 nanotube morphology for improved Li storage kinetics. Electrochim Acta 88:123–128

    Article  CAS  Google Scholar 

  37. Abdur R, Kim K, Kim J-H, Lee J (2015) Electrochemical behavior of manganese oxides on flexible substrates for thin film supercapacitors. Electrochim Acta 153:184–189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (2017H1A2A1043359, 2015R1A5A7037615, 2016M3C1B5906958, and 2016R1C1B1014015). This work was also supported by the National Research Council of Science and Technology of Korea (R&D Convergence Program, CAP-16-08-KITECH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Hwang, J., Seo, H. et al. Surface-controlled Nb2O5 nanoparticle networks for fast Li transport and storage. J Mater Sci 54, 2493–2500 (2019). https://doi.org/10.1007/s10853-018-3010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3010-0

Keywords

Navigation