Skip to main content
Log in

Formation Mechanism of Novel Sidewall Intermetallic Compounds in Micron Level Sn/Ni/Cu Bumps

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A new kind of intermetallic compounds (IMC) were found around copper pillar in micron level bumps. To investigate the formation mechanism, three different sized Sn/Ni/Cu bumps (10 μm, 20 μm, 50 μm) were electroplated then reflowed at 230 °C for 100 s. After reflow process, a thin layer of IMC was formed around copper pillar, which is attributed to surface wetting behavior. After aging at 170 °C and 200 °C for different times, the growth mechanism of sidewall IMC was observed by scanning electron microscopy combined with electron backscatter diffraction (EBSD) technology. Surface diffusion was considered to be the main driving force for sidewall IMC growth for the activation energy of them was found to be much smaller than that in previous studies. The EBSD results showed a preferred orientation of sidewall Cu3Sn grains <100> being perpendicular to copper periphery, which indicated direction of Cu atoms flux during Cu3Sn growth. Formation mechanism of this novel sidewall IMC was proposed based on surface wetting and surface diffusion. The findings contribute to the failure mechanism study in small size bumps and provide insights into the reliability of 3D electronic packaging.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tu, K.N.: Reliability challenges in 3D IC packaging technology. Microelectron. Reliab. 51, 517–523 (2011). https://doi.org/10.1016/J.MICROREL.2010.09.031

    Article  Google Scholar 

  2. Ladani, L.J.: Numerical analysis of thermo-mechanical reliability of through silicon vias (TSVs) and solder interconnects in 3-dimensional integrated circuits. Microelectron. Eng. 87, 208–215 (2010). https://doi.org/10.1016/J.MEE.2009.07.022

    Article  Google Scholar 

  3. Meinshausen, L., Weide-Zaage, K., Frémont, H.: Migration induced material transport in Cu–Sn IMC and SnAgCu microbumps. Microelectron. Reliab. 51, 1860–1864 (2011). https://doi.org/10.1016/j.microrel.2011.06.032

    Article  Google Scholar 

  4. Liu, Y., Chu, Y.-C., Tu, K.N.: Scaling effect of interfacial reaction on intermetallic compound formation in Sn/Cu pillar down to 1 μm diameter. Acta Mater. 117, 146–152 (2016). https://doi.org/10.1016/J.ACTAMAT.2016.07.004

    Article  Google Scholar 

  5. Wang, D., Ling, H., Sun, M., Miao, X., Hu, A., Li, M., Dai, F., Zhang, W., Cao, L.: Investigation of intermetallic compound and voids growth in fine-pitch Sn–3.5Ag/Ni/Cu microbumps. J. Mater. Sci. Mater. Electron. 29, 1861–1867 (2018). https://doi.org/10.1007/s10854-017-8096-7

    Article  Google Scholar 

  6. Liang, Y.C., Chen, C., Tu, K.N.: Side wall wetting induced void formation due to small solder volume in microbumps of Ni/SnAg/Ni upon reflow. ECS Solid State Lett. 1, P60–P62 (2012). https://doi.org/10.1149/2.002204ssl

    Article  Google Scholar 

  7. Tang, Y., Guo, Q.W., Luo, S.M., Li, Z.H., Li, G.Y., Hou, C.J., Zhong, Z.Y., Zhuang, J.J.: Formation and growth of interfacial intermetallics in Sn–0.3Ag–0.7Cu–xCeO2/Cu solder joints during the reflow process. J. Alloys Compd. 778, 741–755 (2019). https://doi.org/10.1016/j.jallcom.2018.11.156

    Article  Google Scholar 

  8. Tu, K.N., Hsiao, H.-Y., Chen, C.: Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy. Microelectron. Reliab. 53, 2–6 (2013). https://doi.org/10.1016/J.MICROREL.2012.07.029

    Article  Google Scholar 

  9. Yu, J.J., Yang, C.A., Lin, Y.F., Hsueh, C.H., Kao, C.R.: Optimal Ag addition for the elimination of voids in Ni/SnAg/Ni micro joints for 3D IC applications. J. Alloys Compd. 629, 16–21 (2015). https://doi.org/10.1016/J.JALLCOM.2015.01.001

    Article  Google Scholar 

  10. Panchenko, I., Croes, K., De Wolf, I., De Messemaeker, J., Beyne, E., Wolter, K.-J.: Degradation of Cu6Sn5 intermetallic compound by pore formation in solid–liquid interdiffusion Cu/Sn microbump interconnects. Microelectron. Eng. 117, 26–34 (2014). https://doi.org/10.1016/J.MEE.2013.12.003

    Article  Google Scholar 

  11. Bertheau, J., Bleuet, P., Pantel, R., Charbonnier, J., Hodaj, F., Coudrain, P., Hotellier, N.: Microstructural and morphological characterization of SnAgCu micro-bumps for integration in 3D interconnects. In: Proceedings—Electronic Components and Technology Conference , pp. 1127–1132 (2013). https://doi.org/10.1109/ectc.2013.6575715

  12. Labie, R., Ruythooren, W., Van Humbeeck, J.: Solid state diffusion in Cu–Sn and Ni–Sn diffusion couples with flip-chip scale dimensions. Intermetallics 15, 396–403 (2007). https://doi.org/10.1016/J.INTERMET.2006.08.003

    Article  Google Scholar 

  13. Liu, W., Tian, Y., Wang, C., Wang, X., Liu, R.: Morphologies and grain orientations of Cu–Sn intermetallic compounds in Sn3.0Ag0.5Cu/Cu solder joints. Mater. Lett. 86, 157–160 (2012). https://doi.org/10.1016/j.matlet.2012.07.016

    Article  Google Scholar 

  14. Zhang, R., Tian, Y., Hang, C., Liu, B., Wang, C.: Formation mechanism and orientation of Cu3Sn grains in Cu–Sn intermetallic compound joints. Mater. Lett. 110, 137–140 (2013). https://doi.org/10.1016/J.MATLET.2013.07.116

    Article  Google Scholar 

  15. Lis, A., Kenel, C., Leinenbach, C.: Characteristics of reactive Ni3Sn4 formation and growth in Ni–Sn interlayer systems. Metall. Mater. Trans. A 47, 2596–2608 (2016). https://doi.org/10.1007/s11661-016-3444-4

    Article  Google Scholar 

  16. Zheng, D.W., Wen, W., Tu, K.N.: Reactive wetting- and dewetting-induced diffusion-limited aggregation. Phys. Rev. E 57, R3719–R3722 (1998). https://doi.org/10.1103/PhysRevE.57.R3719

    Article  Google Scholar 

  17. Kang S.C.: Fundamentals of Solder Interconnect Wetting, pp 20–29 (2003)

  18. Liashenko, O.Y., Lay, S., Hodaj, F.: On the initial stages of phase formation at the solid Cu/liquid Sn-based solder interface. Acta Mater. 117, 216–227 (2016). https://doi.org/10.1016/J.ACTAMAT.2016.07.021

    Article  Google Scholar 

  19. Ho, C.E., Kuo, T.T., Wang, C.C., Wu, W.H.: Inhibiting the growth of Cu3Sn and Kirkendall voids in the Cu/Sn–Ag–Cu system by minor Pd alloying. Electron. Mater. Lett. 8, 495–501 (2012). https://doi.org/10.1007/s13391-012-2049-3

    Article  Google Scholar 

  20. Onishi, M., Fujibuchi, H.: Reaction–diffusion in the Cu–Sn system. Trans. Jpn. Inst. Metals 16, 539–547 (1975). https://doi.org/10.2320/matertrans1960.16.539

    Article  Google Scholar 

  21. Ghosh, G.: Interfacial microstructure and the kinetics of interfacial reaction in diffusion couples between Sn–Pb solder and Cu/Ni/Pd metallization. Acta Mater. 48, 3719–3738 (2000). https://doi.org/10.1016/S1359-6454(00)00165-8

    Article  Google Scholar 

  22. Tikare, V., Cawley, J.D.: Numerical simulation of grain growth in liquid phase sintered materials—I Model. Acta Mater. 46, 1333–1342 (1998). https://doi.org/10.1016/S1359-6454(97)00269-3

    Article  Google Scholar 

  23. Paul, A., Ghosh, C., Boettinger, W.J.: Diffusion parameters and growth mechanism of phases in the Cu–Sn system. Metall. Mater. Trans. A 42, 952–963 (2011). https://doi.org/10.1007/s11661-010-0592-9

    Article  Google Scholar 

  24. Tu, K.: Interdiffusion and reaction in bimetallic Cu–Sn thin films. Acta Metall. 21, 347–354 (1973). https://doi.org/10.1016/0001-6160(73)90190-9

    Article  Google Scholar 

  25. Li, J.F., Agyakwa, P.A., Johnson, C.M.: Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59, 1198–1211 (2011). https://doi.org/10.1016/J.ACTAMAT.2010.10.053

    Article  Google Scholar 

  26. Neils, W.K., Chromik, R.R., Dreyer, K.F., Grosman, D., Cotts, E.J.: Calorimetric study of the energetics and kinetics of interdiffusion in Cu/Cu6Sn5 thin film diffusion couples. MRS Proc. 398, 313 (1995). https://doi.org/10.1557/PROC-398-313

    Article  Google Scholar 

  27. Gao, F., Qu, J.: Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations. Mater. Lett. 73, 92–94 (2012). https://doi.org/10.1016/J.MATLET.2012.01.014

    Article  Google Scholar 

  28. Yuan, Y., Guan, Y., Li, D., Moelans, N.: Investigation of diffusion behavior in Cu–Sn solid state diffusion couples. J. Alloys Compd. 661, 282–293 (2016). https://doi.org/10.1016/j.jallcom.2015.11.214

    Article  Google Scholar 

  29. Liu, C.Y., Hu, Y.J., Liu, Y.S., Tseng, H.W., Huang, T.S., Lu, C.T., Chuang, Y.C., Cheng, S.L.: Epitaxial Cu–Sn bulk crystals grown by electric current. Acta Mater. 61, 5713–5719 (2013). https://doi.org/10.1016/J.ACTAMAT.2013.06.014

    Article  Google Scholar 

  30. Bhedwar, H.C., Ray, K.K., Kulkarni, S.D., Balasubramanian, V.: Kirkendall effect studies in copper–tin diffusion couples. Scr. Metall. 6, 919–922 (1972). https://doi.org/10.1016/0036-9748(72)90145-7

    Article  Google Scholar 

  31. Révay, L.: Interdiffusion and formation of intermetallic compounds in tin–copper alloy surface coatings. Surf. Technol. 5, 57–63 (1977). https://doi.org/10.1016/0376-4583(77)90041-3

    Article  Google Scholar 

  32. Lubyova, Z., Fellner, P., Matiasovsky, K.: Diffusion in systems iron–tin and copper–tin. Z. Für Metals 66, e179–e182 (1975)

    Google Scholar 

Download references

Funding

This work is sponsored by the National Basic Research Program of China (973 Program, 2015CB057200) and the National Natural Science Foundation of China (61376107). We also thank the Instrumental Analysis Center of Shanghai Jiao Tong University, for the use of the SEM equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-min Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Sun, M., Jin, Z. et al. Formation Mechanism of Novel Sidewall Intermetallic Compounds in Micron Level Sn/Ni/Cu Bumps. Electron. Mater. Lett. 15, 562–571 (2019). https://doi.org/10.1007/s13391-019-00154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00154-7

Keywords

Navigation