Skip to main content
Log in

Effect of gate-dielectrics on the electrical characteristics of solution-processed single-wall-carbon-nanotube thin-film transistors

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

High performance of solution-processed, single-wall-carbon-nanotube (SWCNT) thin-film transistors (TFTs) is investigated through the use in the different gatedielectrics of silicon dioxide (SiO2), silicon nitride (SiNx), the bilayers of SiO2 and SiNx, and hexagonal boron-nitride (h-BN) thin films. The different interfacial characteristics affect the electrical characteristics of the SWCNT-TFTs including key device metrics. Significantly, the hysteresis window that is normally observed in drop-casted SWCNT-TFTs was majorly suppressed by the employment of a thin lower dielectric-constant material on a higher dielectricconstant material. Sub-2V operating SWCNT-TFTs with solution-processed h-BN gate dielectrics with good above- and sub-threshold characteristics are also investigated on the basis of interfacial characteristics underlying the device physics. Such performance can be realized by the suppressed interfacial impurity scattering through the chemically clean interface combined with optimized solution-process below 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Sun and J. A. Rogers, Adv. Mater. 19, 1897 (2007).

    Article  Google Scholar 

  2. E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Grüner, Nano Lett. 5, 757 (2005).

  3. W. J. Yu, S. H. Chae, S. Y. Lee, D. L. Duong, and Y. H. Lee, Adv. Mater. 23, 1889 (2011).

    Article  Google Scholar 

  4. S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).

    Article  Google Scholar 

  5. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003).

    Article  Google Scholar 

  6. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998).

    Article  Google Scholar 

  7. S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, and J. A. Rogers, Nat. Nanotechnol. 2, 230 (2007).

    Article  Google Scholar 

  8. E. S. Snow, P. M. Campbell, M. G. Ancona, and J. P. Novak, Appl. Phys. Lett. 86, 033105 (2005).

    Article  Google Scholar 

  9. V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, Nano Lett. 1, 453 (2001).

    Article  Google Scholar 

  10. J. Huang, S. Somu, and A. Busnaina, Electron. Mater. Lett. 9, 505 (2013).

    Article  Google Scholar 

  11. T. Takahashi, K. Takei, A. G. Gillies, R. S. Fearing, and A. Javey, Nano Lett. 11, 5408 (2011).

    Article  Google Scholar 

  12. N. Seong, T. Kim, H. Kim, T.-J. Ha, and Y. Hong, Curr. Appl. Phys. 15, S8 (2015).

    Article  Google Scholar 

  13. M. L. Geier, J. J. McMorrow, W. Xu, J. Zhu, C. H. Kim, T. J. Marks, and M. C. Hersam, Nat. Nanotechnol. 10, 944 (2015).

    Article  Google Scholar 

  14. C. Yeom, K. Chen, D. Kiriya, Z. Yu, G. Cho, and A. Javey, Adv. Mater. 27, 1561 (2015).

    Article  Google Scholar 

  15. M. C. LeMieux, M. Roberts, S. Barman, Y. W. Jin, J. M. Kim, and Z. Bao, Science 321, 101 (2008).

    Article  Google Scholar 

  16. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai, Nat. Mater. 1, 241 (2002).

    Article  Google Scholar 

  17. I. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Iossad, G. Rastelli, S. Ciuchi, and A. F. Morpurgo, Nat. Mater. 5, 982 (2006).

    Article  Google Scholar 

  18. T.-J. Ha, D. Kiriya, K. Chen, and A. Javey, ACS Appl. Mater. Inter. 6, 8441 (2014).

    Article  Google Scholar 

  19. J.-Y. Jeon and T.-J. Ha, IEEE Trans. Electron. Dev. 63, 827 (2016).

    Article  Google Scholar 

  20. B. Kim, S. Jang, M. L. Geier, P. L. Prabhumirashi, M. C. Hersam, and A. Dodabalapur, Nano Lett. 14, 3683 (2014).

    Article  Google Scholar 

  21. M. A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M. L. Usrey, M. S. Strano, and J. A. Rogers, Nano Lett. 4, 1643 (2004).

    Article  Google Scholar 

  22. W. L. Kalb and B. Batlogg, Phy. Rev. B. 81, 035327 (2010).

    Article  Google Scholar 

  23. S. Jang, B. Kim, M. L. Geier, P. L. Prabhumirashi, M. C. Hersam, and A. Dodabalapur, Appl. Phys. Lett. 105, 122107 (2014).

    Article  Google Scholar 

  24. A. Facchtti, M.-H. Yoon, and T. J. Marks, Adv. Mater. 17, 1705 (2005).

    Article  Google Scholar 

  25. J. S. Lee, S. Ryu, K. Yoo, I. S. Choi, W. S. Yun, and J. Kim, J. Phys. Chem. C. 111, 12504 (2007).

    Article  Google Scholar 

  26. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).

    Article  Google Scholar 

  27. J. Bao, K. Jeppson, M. Edwards, Y. Fu, L. Ye, X. Lu, and J. Liu, Electron. Mater. Lett. 12, 1 (2016).

    Article  Google Scholar 

  28. J. Lee, T.-J. Ha, K. N. Parrish, Sk. F. Chowdhury, L. Tao, A. Dodabalapur, and D. Akinwande, IEEE Electron Dev. Lett. 34, 172 (2013).

    Article  Google Scholar 

  29. T.-J. Ha and A. Dodabalapur, Appl. Phys. Lett. 102, 123506 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jun Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, TJ. Effect of gate-dielectrics on the electrical characteristics of solution-processed single-wall-carbon-nanotube thin-film transistors. Electron. Mater. Lett. 13, 287–291 (2017). https://doi.org/10.1007/s13391-017-7005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-7005-9

Keywords

Navigation