Skip to main content
Log in

Optical anisotropy in micromechanically rolled carbon nanotube forest

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The bulk appearance of arrays of vertically aligned carbon nanotubes (VACNT arrays or CNT forests) is dark as they absorb most of the incident light. In this paper, two postprocessing techniques have been described where the CNT forest can be patterned by selective bending of the tips of the nanotubes using a rigid cylindrical tool. A tungsten tool was used to bend the vertical structure of CNTs with predefined parameters in two different ways as stated above: bending using the bottom surface of the tool (micromechanical bending (M2B)) and rolling using the side of the tool (micromechanical rolling (M2R)). The processed zone was investigated using a Field Emission Scanning Electron Microscope (FESEM) and optical setup to reveal the surface morphology and optical characteristics of the patterned CNTs on the substrate. Interestingly, the polarized optical reflection from the micromechanical rolled (M2R) sample was found to be significantly influenced by the rotation of the sample. It was observed that, if the polarization of the light is parallel to the alignment of the CNTs, the reflectance is at least 2 x higher than for the perpendicular direction. Furthermore, the reflectance varied almost linearly with good repeatability (~10%) as the processed CNT forest sample was rotated from 0° to 90°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. T. Kashyap and R. G. Patil, Bull. Mater. Sci. 31, 185 (2008).

    Article  Google Scholar 

  2. M. Park, B. A. Cola, T. Siegmund, J. Xu, M. R. Maschmann, T. S. Fisher, and H. Kim, Nanotechnology 17, 2294 (2006).

    Article  Google Scholar 

  3. Y. Fu, N. Nabiollahi, T. Wang, S. Wang, Z. Hu, B. Carlberg, Y. Zhang, X. Wang, and J. Liu, Nanotechnology 23, 45304 (2012).

    Article  Google Scholar 

  4. S. B. Tooski, A. Godarzi, M. S. Solari, M. Ramyar, and A. Roohforouz, J. Appl. Phys. 110, 34307 (2011).

    Article  Google Scholar 

  5. Y. Q. Jiang, Q. Zhou, and L. Lin, Proc. 2009. IEEE 22nd International Conference on Micro Electro Mechanical Systems (MEMS), p. 587, IEEE, Sorrento, Italy (2009).

    Book  Google Scholar 

  6. Y. Jiang, A. Kozinda, T. Chang, and L. Lin, Sensor. Actuat. A-Phys. 195, 224 (2013).

    Article  Google Scholar 

  7. K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennet, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, and D. Z. Wang, Nano Lett. 3, 13 (2003).

    Article  Google Scholar 

  8. Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, Nano Lett. 8, 446 (2008).

    Article  Google Scholar 

  9. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. U. S. A. 106, 6044 (2009).

    Article  Google Scholar 

  10. S. Mukherjee and A. Misra, J. Phys. D: Appl. Phys. 47, 235501 (2014).

    Article  Google Scholar 

  11. M. Wasik, J. Judek, and M. Zdrojek, Carbon 64, 550 (2013).

    Article  Google Scholar 

  12. F. C. Cheong, K. Y. Lim, C. H. Sow, J. Lin, and C. K. Ong, Nanotechnology 14, 433 (2003).

    Article  Google Scholar 

  13. B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, and P. M. Ajayan, Chem. Mater. 15, 1598 (2003).

    Article  Google Scholar 

  14. T. Saleh, M. Dahmardeh, A. Bsoul, A. Nojeh, and K. Takahata, J. Appl. Phys. 110, 103305 (2011).

    Article  Google Scholar 

  15. M. A. M. Razib, T. Saleh, and M. Hassan, Smart Instrumentation, Measurement and Applications (ICSIMA), 2014. IEEE International Conference, pp. 25–27, IEEE, Kuala Lumpur, Malaysia (2014).

    Google Scholar 

  16. M. R. Mohd Asyraf, M. Masud Rana, T. Saleh, Harrison D. E. Fan, Andrew T. Koch, A. Nojeh, K. Takahata, and A. B. Suriani, Fuller. Nanotub. Car. N. 24, 88 (2016).

    Article  Google Scholar 

  17. T. Masuzawa, M. Fujino, K. Kobayashi, T. Suzuki, and N. Kinoshita, CIRP Ann. -Manuf. Techn. 34, 431 (1985).

    Article  Google Scholar 

  18. X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, Nanotechnology 20, 215704 (2009).

    Article  Google Scholar 

  19. T. Saleh, M. V. Moghaddam, M. S. M. Ali, M. Dahmardeh, C. A. Foell, A. Nojeh, and K. Takahata, Appl. Phys. Lett. 101, 61913 (2012).

    Article  Google Scholar 

  20. J. C. Owens, Appl. Opt. 6, 51 (1967).

    Article  Google Scholar 

  21. H. Shi, J. G. Ok, H. Won Baac, and L. Jay Guo, Appl. Phys. Lett. 99, 211103 (2011).

    Article  Google Scholar 

  22. W. A. de Heer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, Science 268, 845 (1995).

    Article  Google Scholar 

  23. T. Saleh, A. N. Rasheed, and A. G. A. Muthalif, Int. J. Adv. Manuf. Tech. 78, 1651 (2015).

    Article  Google Scholar 

  24. S. Mukherjee, A. Suri, V. K. Vani, and A. Misra, Appl. Phys. Lett. 103, 131909 (2013).

    Article  Google Scholar 

  25. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, Appl. Opt. 22, 1099 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harrison Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razib, M.A.b., Rana, M., Saleh, T. et al. Optical anisotropy in micromechanically rolled carbon nanotube forest. Electron. Mater. Lett. 13, 442–448 (2017). https://doi.org/10.1007/s13391-017-6422-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6422-0

Keywords

Navigation