Skip to main content
Log in

Study of the morphological, optical, structural and photoelectrochemical properties of TiO2 nanorods grown with various precursor concentrations

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Vertically aligned TiO2 nanorods were grown on a fluorine-doped tin oxide (FTO) substrate covered with a TiO2 buffer layer by using the hydrothermal method with various titanium precursor concentrations. In this study, the effects of the precursor concentration on the morphological, structural, optical and photoelectrochemical properties of TiO2 nanorods were investigated. We observed that photoelectrochemical properties were mainly dependent on the nanorod length, surface area, transmittance and (002) XRD peak intensity, which indicates the oriented growth of the TiO2 nanorods perpendicular to the substrate. As a result, the sample grown from a 0.09 M precursor solution, which grew vertically and had the highest surface area, showed the highest photocurrent density, 0.733 mA/cm2 (at 1.0 V vs. SCE). Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to characterize the morphology of the nanorods, X-ray diffraction (XRD) was used to detect the structural properties of the nanorods, UV-visual spectroscopy was used to measure the optical properties, and analysis with a three-electrode potentiostat was used to measure the photoelectrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, Int. J. Hydrogen Energ. 36, 991 (2002).

    Article  Google Scholar 

  2. J. Lee, Y. Yi, and S. Uhm, J. Korean Ind. Eng. Chem. 19, 357 (2008).

    Google Scholar 

  3. M. Gratzel, Nature 414, 338 (2001).

    Article  Google Scholar 

  4. J. Nowotny, C. C. Sorrell, L. R. Sheppard, and T. Bak, Int. J. Hydrogen Energ. 30, 521 (2005).

    Article  Google Scholar 

  5. J. Zhu and M. Zach, Curr. Opin. Colloid Interface Sci. 14, 260 (2009).

    Article  Google Scholar 

  6. J. Cui and U. J. Gibson, J. Phys. Chem. 114, 6408 (2010).

    Article  Google Scholar 

  7. I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo, and X. Zheng, Nano Lett. 11, 4978 (2011).

    Article  Google Scholar 

  8. W. Wang, W. Zhang, S. Meng, L. Jia, M. Tan, C. Hao, Y. Liang, J. Wang, and B. Zou, Electron. Mater. Lett. 12, 753 (2016).

    Article  Google Scholar 

  9. Y. S. Chaudhary, A. Agrawal, R. Shrivastav, V. R. Satsangi, and S. Dass, Int. J. Hydrogen Energ. 29, 131 (2004).

    Article  Google Scholar 

  10. Y. C. Pu, G. Wang, K. D. Chang, Y. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. J. Hsu, and Y. Li, Nano Lett. 13, 3817 (2013).

    Article  Google Scholar 

  11. A. N. Banerjee, Nanotechnol. Sci. Appl. 4, 35 (2011).

    Article  Google Scholar 

  12. J. H. Bang and P. V. Kamat, Adv. Funct. Mater. 20, 1970 (2010).

    Article  Google Scholar 

  13. A. M. More, T. P. Gunjakar, C. E. Lokhande, and O. S. Joo, Appl. Surf. Sci. 255, 2682 (2008).

    Article  Google Scholar 

  14. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett. 6, 215 (2006).

    Article  Google Scholar 

  15. J. C. Lee, T. G. Kim, W. Lee, S. H. Han, and Y. M. Sung, Cryst. Growth Des. 9, 4519 (2009).

    Article  Google Scholar 

  16. N. Liu, X. Chen, J. Zhang, and J. W. Schwank, Catal. Today 225, 34 (2014).

    Article  Google Scholar 

  17. T. D. N. Phan, H. DinhPham, T. V. Cuong, E. J. Kim, S. Kim, and E. W. Shin, J. Cryst. Growth 312, 79 (2009).

    Article  Google Scholar 

  18. D. S. Kim and S. Y. Kwak, Appl. Catal. A: Gen. 323, 110 (2007).

    Article  Google Scholar 

  19. K. H. Tam, A. B. Djurisic, C. M. N. Chan, Y. Y. Xi, C. W. Tse, Y. H. Leung, W. K. Chan, F. C. C. Leung, and D. W. T. Au, Thin Solid Films 516, 6167 (2008).

    Article  Google Scholar 

  20. T. Sahoo, S. K. Tripathy, Y. T. Yu, H. K. Ahn, D. C. Shin, and I. H. Lee, Mater. Res. Bull. 4, 2060 (2008).

    Article  Google Scholar 

  21. S. Li, S. Zhou, H. Liu, Y. Hang, C. Xia, J. Xu, S. Gu, and R. Zhang, Mater. Lett. 61, 30 (2007).

    Article  Google Scholar 

  22. M. N. R. Ashfold, R. P. Doherty, N. G. N. Angwafor, D. J. Riley, and Y. Sun, Thin Solid Films 515, 8679 (2007).

    Article  Google Scholar 

  23. M. Guo, P. Diao, and S. Cai, J. Solid State Chem. 178, 1864 (2005).

    Article  Google Scholar 

  24. B. Liu and E. S. Aydil, Chinese Phys. B 23, 048104 (2014).

    Article  Google Scholar 

  25. Y. Zhao, W. Yang, Y. Zhou, Y. Chen, Y. Yang, J. Xu, and Y. Jiang, Electron. Mater. Lett. 12, 779 (2016).

    Article  Google Scholar 

  26. H. B. Oh, H. H. Ryu, and W. J. Lee, J. Alloy. Compd. 620, 55 (2015).

    Article  Google Scholar 

  27. X. Zhao, J. Y. Lee, C. R. Kim, J. H. Heo, C. M. Shin, J. Y. Leem, H. H. Ryu, J. H. Chang, H. C. Lee, W. G. Jung, C. S. Son, B. C. Shin, W. J. Lee, S. T. Tan, J. L. Zhao, and X. W. Sun, Physica E 41, 121423 (2009).

    Google Scholar 

  28. M. Iraj, F. D. Nayeri, E. A. Soleimani, and K. Narimani, J. Alloy. Compd. 659, 44 (2016).

    Article  Google Scholar 

  29. M. Rajabi, S. Shogh, and A. Irajizad, J. Lumin. 157, 235 (2015).

    Article  Google Scholar 

  30. Y. L. M. Guo, M. Zhang, and X. Wang, Mater. Res. Bull. 44, 1232 (2009).

    Article  Google Scholar 

  31. H. E. Wang, Z. Chen, Y. H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J. A. Zapien, I. Bello, and S. T. Lee, Appl. Phys. Lett. 96, 263104 (2010).

    Article  Google Scholar 

  32. Y. H. Liou, S. L. Lo, W. H. Kuan, C. J. Lin, and S. C. Weng, Water Res. 40, 2485 (2006).

    Article  Google Scholar 

  33. Z. Gui, X. Wang, J. Liu, S. Yan, Y. Ding, Z. Wang, and Y. Hu, J. Solid State Chem. 179, 1984 (2006).

    Article  Google Scholar 

  34. L. Meng, H. Chen, C. Li, and M. P. Santos, Thin Solid Films 577, 103 (2015).

    Article  Google Scholar 

  35. X. J. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, Nano Lett. 8, 3781 (2008).

    Article  Google Scholar 

  36. H. Chen, W. Fu, H. Yang, P. Sun, Y. Zhang, L. Wang, W. Zhaoa, X. Zhou, H. Zhao, Q. Jing, X. Qi, and Y. Li, Electrochim. Acta 56, 919 (2010).

    Article  Google Scholar 

  37. S. A. Vanalakar, S. S. Mali, R. C. Pawar, N. L. Tarwal, A. V. Moholkar, J. H. Kim, and P. S. Patil, J. Appl. Phys. 112, 044302 (2012).

    Article  Google Scholar 

  38. J. Bian, C. Huang, L. Wang, T. Hung, W. A. Daoud, and R. Zhang, ACS Appl. Mater. Inter. 6, 4883 (2014).

    Article  Google Scholar 

  39. Y. J. Hwang, C. Hahn, B. Liu, and P. Yang, ACS Nano 6, 5060 (2012).

    Article  Google Scholar 

  40. X. Zhao, W. Luo, J. Feng, M. Li, Z. Li, and T. Yu, Adv. Energy Mater. 4, 1601785 (2014).

    Article  Google Scholar 

  41. X. Zheng, S. Shen, F. Ren, G. Cai, Z. Xing, Y. Liu, D. Liu, G. Zhang, X. Xiao, W. Wu, and C. Jiang, Int. J. Hydrogen Energ. 40, 5034 (2015).

    Article  Google Scholar 

  42. T. Hamamura, J. T. Dy, K. Tamaki, J. Nakazaki, S. Uchida, T. Kuboa, and H. Segawa, Chem. Phys. 16, 4551 (2014).

    Google Scholar 

  43. Z. Zhou, J. Fan, X. Wang, W. Zhou, Z. Du, and S. Wu, ACS Appl. Mater. Inter. 3, 4349 (2011).

    Article  Google Scholar 

  44. C. Y. Kim, H.-B. Oh, H. Ryu, J. Yun, and W.-J. Lee, J. Vac. Sci. Technol. A, 32, 051505 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyukhyun Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Ryu, H. & Lee, WJ. Study of the morphological, optical, structural and photoelectrochemical properties of TiO2 nanorods grown with various precursor concentrations. Electron. Mater. Lett. 13, 497–504 (2017). https://doi.org/10.1007/s13391-017-6390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6390-4

Keywords

Navigation