Skip to main content
Log in

Electromigration of composite Sn-Ag-Cu solder bumps

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

This study investigates the electromigration (EM) behavior of lead free Sn-Ag-Cu (SAC) solder alloys that were reinforced with different types of nanoparticles [Copper-coated carbon nanotubes (Cu/CNT), La2O3, Graphene, SiC, and ZrO2]. The composite solders were bumped on a Cu substrate at 220°C, and the resistance of the bumped solders was measured using a four wire setup. Current aging was carried out for 4 hours at a temperature of 160°C, and an increase in resistance was noted during this time. Of all the composite solders that were studied, La2O3 and SiC reinforced SAC solders exhibited the smallest resistances after current aging. However, the rate of change in the resistance at room temperature was lower for the SiC-reinforced SAC solder. The SAC and Graphene reinforced SAC solder bumps completely failed within 15 - 20 min of these tests. The SiC nanoparticles were reported to possibly entrap the SAC atoms better than other nanoparticles with a lower rate of EM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Kim, K. S. Shin, and J. P. Jung, JWJ 19, 15 (2001).

    Google Scholar 

  2. S. M. Hong, J. Y. Park, M. I. Kim, J. P. Jung, and C. S. Kang, JWJ 18, 74 (2000).

    Google Scholar 

  3. S. Jin, N. Kang, K. M. Cho, C. W. S. Lee, and W. Hong, JWJ 30, 65 (2012).

    Google Scholar 

  4. E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002).

    Article  Google Scholar 

  5. J. W. Nah, J. O. Suh, and K. N. Tu, J. Appl. Phys. 98, 013715 (2005).

    Article  Google Scholar 

  6. C. Basaran, H. Ye, D. C. Hopkins, D. Frear, and J. K. Lin, J. Electron. Packag. 127, 157 (2005).

    Article  Google Scholar 

  7. D. J. Nam, J. H. Lee, and C. D. Yoo, JWJ 25, 76 (2007).

    Google Scholar 

  8. K. S. Kim, S. H. Huh, and K. Suganuma, Microelectron. Reliab. 43, 259 (2003).

    Article  Google Scholar 

  9. R. Zhao, L. Ma, Y. Zuo, S. Liu, and F. Guo, J. Electron. Mater. 42, 280 (2013).

    Article  Google Scholar 

  10. L. Zhang, X. Y. Fan, Y. H. Guo, and C. W. He, Electron. Mater. Lett. 10, 645 (2014).

    Article  Google Scholar 

  11. H. Y. Lee, A. Sharma, S. H. Kee, Y. W. Lee, J. T. Moon, and J. P. Jung, Electron. Mater. Lett. 10, 997 (2014).

    Article  Google Scholar 

  12. P. Yao, P. Liu, and J. Liu, J. Alloy. Compd. 462, 73 (2008).

    Article  Google Scholar 

  13. A. S. M. A. Haseeb, M. M. Arafat, and M. R. Johan, Mater. Char. 64, 27 (2012).

    Article  Google Scholar 

  14. F. Cheng, F. Gao, H. Nishikawa, and T. Takemoto, J. Alloy. Compd. 472, 530 (2009).

    Article  Google Scholar 

  15. K. M. Kumar, V. Kripesh, and A. A. O. Tay, J. Alloy. Compd. 450, 229 (2008).

    Article  Google Scholar 

  16. S. M. L. Nai, J. Wei, and M. Gupta, Thin Solid Films 504, 401 (2006).

    Article  Google Scholar 

  17. P. Liu, P. Yao, and J. Liu, J. Electron. Mater. 37, 874 (2008).

    Article  Google Scholar 

  18. A. K. Gain, Y. C. Chan, and W. K. C. Yung, Microelectron. Reliab. 51, 2306 (2011).

    Article  Google Scholar 

  19. A. K. Gain and Y. C. Chan, Microelectron. Reliab. 54, 945 (2014).

    Article  Google Scholar 

  20. X. D. Liu, Y. D. Han, H. Y. Jing, J. Wei, and L. Y. Xu, Mater. Sci. Eng. A 562, 25 (2013).

    Article  Google Scholar 

  21. F. Guo, G. Xu, and H. He, J. Mater. Sci. 44, 5595 (2009).

    Article  Google Scholar 

  22. H. Y. Liu, Q. S. Zhu, Z. G. Wang, J. D. Guo, and J. K. Shang, J. Mater. Sci.: Mater. Electron. 24, 211 (2013).

    Article  Google Scholar 

  23. Z. Yang, W. Zhou, and P. Wu, J. Alloy. Compd. 581, 202 (2013).

    Article  Google Scholar 

  24. S. M. L. Nai, J. Wei, and M. Gupta, J. Electron. Mater. 37, 515 (2008).

    Article  Google Scholar 

  25. Y. D. Han, H. Y. Jing, S. M. L. Nai, L. Y. Xu, C. M. Tan, and J. Wei, Intermetallics 31, 72 (2012).

    Article  Google Scholar 

  26. H. Ye, C. Basaran, D. C. Hopkins, D. Frear, and J.-K. Lin, Proc. IEEE 54th Electron. Comp. Technol. Conf. p. 988, IEEE Inst. Elec. Electron. Eng. Inc., Las Vegas, USA (2004).

    Google Scholar 

  27. T. Y. Lee, K. N. Tu, and D. R. Frear, J. Appl. Phys. 90, 4502 (2001).

    Article  Google Scholar 

  28. A. Sharma, S. Bhattacharya, S. Das, and K. Das, Met. Metall. Trans A 44A, 5587 (2013).

    Google Scholar 

  29. A. Sharma, S. Bhattacharya, S. Das, H.-J. Fecht, and K. Das, J. Alloy Compd. 574, 609 (2013).

    Article  Google Scholar 

  30. T. C. Chang, M.-H. Hon, and M.-C. Wang, Electrochem. Solid State Lett. 7, J4 (2004).

    Article  Google Scholar 

  31. K. P. Chae, JWJ 23, 50 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Mayer or Jae Pil Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Xu, D.E., Chow, J. et al. Electromigration of composite Sn-Ag-Cu solder bumps. Electron. Mater. Lett. 11, 1072–1077 (2015). https://doi.org/10.1007/s13391-015-4454-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4454-x

Keywords

Navigation