Skip to main content
Log in

Electrochemical properties of melt spun Si-Cu-Ti-Zr-Ni alloy powders for the anode of Li-ion batteries

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The Si-Cu-Ti-Zr-Ni alloys of various compositions were prepared using arc-melting under an argon atmosphere, and the alloys were re-melted several times to ensure chemical homogeneity. The alloyed ingots were melt-spun to produce rapidly solidified ribbons under vacuum in order to prevent oxidation. Finely dispersed silicon particles 50–100 nm in diameter mainly consisting of Cu3Si, NiSi2 and TiSi2 phases were formed in the matrices. The alloy ribbons were then fragmented using ball-milling to produce powders. In order to evaluate the electrochemical properties of the alloys, anode electrodes were fabricated by mixing the active alloy materials (80 wt. %) with Ketjenblack® (2 wt. %) as a conductive material and polyamide imide (PAI, 8 wt. %) binder, and the mixtures were dissolved in N-methyl-2-pyrrolidinone (NMP) and SFG6 (10 wt. %). The anode performances of Si-Cu-Ti-Zr-Ni alloy cells were measured in the range 0.01–1.5 V (versus Li/Li+). The results showed that the Si68(Cu47Ti34Zr11Ni8)32 alloy ribbons had the highest specific discharge capacities, and the Si68(Cu40Ti40Zr10Ni10)32 alloy ribbons had relatively stable electrochemical properties and cycle performances due to the very fine microstructure including partially distributed amorphous phase. The matrix phases of the Si-Cu-Ti-Zr-Ni alloy ribbons effectively accommodated the change in Si particle volume during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Johnson and R. E. White, J. Power Sources, 70, 48 (1998).

    Article  Google Scholar 

  2. J. M. Tarascon and M. Armand, Nature 414, 359 (2011).

    Article  Google Scholar 

  3. M. S. Park, S. Rajendran, U. M. Kang, K. S. Han, Y. S. Han, and J. Y. Lee, J. Power Sources 158, 650 (2006).

    Article  Google Scholar 

  4. B. A. Boukamp, G. C. Lesh, and R. A. Huggins, J. Electrochem. Soc. 128, 725 (1981).

    Article  Google Scholar 

  5. M. N. Obrovac and L. Christensen, Electrochem. Solid-State Lett. 7, A93 (2004).

    Article  Google Scholar 

  6. T. D. Hatchard and J. R. Dahn, J. Electrochem. Soc. 151, A838 (2004).

    Article  Google Scholar 

  7. M. Winter and J. O. Besenhard, Electrochem. Acta 45, 31 (1999).

    Article  Google Scholar 

  8. J. Wang, I. D. Raistrick, and R. A. Huggins, J. Electrochem. Soc. 133, 457 (1986).

    Article  Google Scholar 

  9. Y. Kubota, M. Escano, H. Nakanishi, and H. Kasai, J. Alloys Compd. 458, 151 (2008).

    Article  Google Scholar 

  10. C. Sporea, F. Rabilloud, X. Cosson, A. R. Allouche, and M. Aubert-Frecon, J. Phys. Chem. A, 110, 18 (2006).

    Google Scholar 

  11. H. Li, X. Huang, L. Chen, Z. Wu, and Y. Liang, Electrochem. Solid-State Lett. 2, 547 (1999).

    Article  Google Scholar 

  12. M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Adv. Mater. 10, 725 (1998).

    Article  Google Scholar 

  13. D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J. C. Jumas, and J. M. Tarascon, J. Mater. Chem. 17, 3759 (2007).

    Article  Google Scholar 

  14. J. Yang, M. Winter, and J. O. Besenhard, Solid State Ionics 90, 281 (1996).

    Article  Google Scholar 

  15. O. Mao and J. R. Dahn, J. Electrochem. Soc. 146, 423 (1999).

    Article  Google Scholar 

  16. J. Yang, M. Wachtler, M. Winter, and J. O. Besenhard, Electro-Chemical and Solid-state Lett. 2, 161 (1999).

    Article  Google Scholar 

  17. H. Li, L. Shi, W. Lu, X. Huang, and L. Chen, J. Electrochem. Soc. 148, A915 (2001).

    Article  Google Scholar 

  18. D. Zhang, J. P. Tu, J. Y. Xiang, Y. Q. Qiao, X. H. Xia, X. L. Wang, and C. D. Gu, Electrochemica Acta 56, 9980 (2011).

    Article  Google Scholar 

  19. J. Saint, M. Morcrette, D. Larcher, L. Laggont, S. Beattie, J. P. Peres, D. Talaga, M. Couszi, and J. M. Tarascon, Adv. Funct. Mater. 17, 1765 (2007).

    Article  Google Scholar 

  20. H. C. Jung, Y.-U. Kim, M.-S. Sung, Y. Hwa, G. J. Seong, G.-B. Kim, and H.-J. Sohn, J. Mater. Chem. 21, 11213 (2011).

    Article  Google Scholar 

  21. U. Kasavajjula, C. Wang, and A. J. Appleby, J. Power Source 163, 1003 (2007).

    Article  Google Scholar 

  22. H. Ma, F. Y. Cheng, J. Chen, J. Z. Zhao, C. S. Li, Z. L. Tao, and J. Liang, Adv. Mater. 19, 4067 (2007).

    Article  Google Scholar 

  23. B. B. Radojevic, Mater. Sci. Eng. A 304, 385 (2001).

    Article  Google Scholar 

  24. R. Abbaschian and M. D. Lipschutz, Mater. Sci. Eng. A 226–228, 13 (1997).

    Article  Google Scholar 

  25. Y. Kwon, M. K. Kim, Y. Kim, Y. Lee, and J. P. Cho, Electrochem, Solide State Lett. 9, A34 (2006).

    Article  Google Scholar 

  26. T. Nagase, I. Yamauchi, and I. Ohnaka, J. Alloys Compd. 312, 295 (2000).

    Article  Google Scholar 

  27. D. J. Sordelet, E. Rozhkova, P. Huang, P. B. Wheelock, M. F. Besser, and M. J. Kramer, J. Mater. 17, 186 (2002).

    Google Scholar 

  28. H. Choi-Yim, R. Busch, and W. L. Johnson, J. Appl. Phys. 83, 7993 (1998).

    Article  Google Scholar 

  29. X. H. Lin and W. L. Johnson, J. Appl. Phys. 78, 6514 (1995).

    Article  Google Scholar 

  30. A. Cros, M. O. Aboelfotoh, and K. N. Tu, J. Appl. Phys. 67, 3328 (1990).

    Article  Google Scholar 

  31. R. D. Thomson and K. N. Tu, J. Appl. Phys. Lett. 41, 440 (1982).

    Article  Google Scholar 

  32. G. B. Cho, B. M. Kim, H. J. Choi, J. P. Noh, S. I. Choi, H. J. Ahn, S. Miyajaki, and T. H. Nam, J. Alloys Compd. L8–L12, 507 (2010).

    Google Scholar 

  33. M. N. Obrovac and L. Christensen, Electrochem. Solid-State Lett. 7, 93 (2004).

    Article  Google Scholar 

  34. L. Guo, W. Y. Yoon, and B. K. Kim, Electron. Mater. Lett. 8, 405 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Wook Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, S.M., Sohn, K.Y. & Park, WW. Electrochemical properties of melt spun Si-Cu-Ti-Zr-Ni alloy powders for the anode of Li-ion batteries. Electron. Mater. Lett. 10, 795–800 (2014). https://doi.org/10.1007/s13391-014-3379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-3379-0

Keywords

Navigation