Skip to main content
Log in

Rapid thermal annealing effects on the electrical, structural and morphological properties of Yb/p-type InP Schottky Structure

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The electrical, structural and surface morphological properties of Yb/p-InP Schottky barrier diode (SBD) have been investigated at different annealing temperatures. The determined Schottky barrier height (SBH) and ideality factor n of the as-deposited Yb/p-InP SBD are 0.68 eV (I-V)/0.81 eV((C-V)) and 1.44 respectively. After annealing at 300℃, the SBH of Yb/p-InP SBD increases to 0.72 eV (I-V)/0.88 eV ((C-V)). When the contact is annealed at 400℃, the SBH slightly decreases to 0.67 eV (I-V)/0.80 eV ((C-V)). These results reveal that the optimum annealing temperature for Yb/p-InP SBD is 300℃. Cheung’s functions are also employed to determine the series resistance of the Yb/p-InP SBD. Using Terman’s method, the interface state density is estimated for Yb/p-InP SBD at different annealing temperatures. The XPS results reveal that the existence of phosphorous-rich surface after the annealing. The AES and XRD results showed that the formation of phosphide phases at the Yb/p-InP interface may be the reason for the increase of SBH after annealing at 300℃. The decrease in the BH after annealing at 400℃ may be due to the formation of indium phases at the interface. The overall surface morphology of the Yb Schottky contact is fairly smooth at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hattori and Y. Torii, Solid-State Electron. 34, 527 (1991).

    Article  Google Scholar 

  2. P. Victorovitch, P. Louis, M. P. Besland, and A. Chovet, Solid-State Electron. 38, 1035 (1995).

    Article  Google Scholar 

  3. P. Cova, A. Sing, A. Medina, and R. A. Masut, Solid-State Electron. 42, 477 (1997).

    Article  Google Scholar 

  4. H. C. Card and E. H. Rhoderck, J. Phys. D: Appl. Phys. 4, 1589 (1971).

    Article  Google Scholar 

  5. M. E. Aydin, K. Akkilic, and T. Kilicoglu, Physica B 352, 312 (2004).

    Article  Google Scholar 

  6. S. N. Mohammad, J. Appl. Phys. 97, 063703(1) (2005).

    Google Scholar 

  7. A. Motayed and S. N. Mohammad, J. Chem. Phys. 123, 194703(1) (2005).

    Article  Google Scholar 

  8. S. Chand and S. Bala, Physica B 390, 179 (2007).

    Article  Google Scholar 

  9. K. Hattori and Y. Izumi, J. Appl. Phys. 53, 6906 (1982).

    Article  Google Scholar 

  10. F. E. Jones, C. D. Hafer, B. P. Wood, R. G. Danner, and M. C. Lonergan, J. Appl.Phys. 90, 1001 (2001).

    Article  Google Scholar 

  11. O. Gullu and A. Turut, Sol. Energy Mater. Sol. Cells. 92, 1205 (2008).

    Article  Google Scholar 

  12. A. Singh, K. C. Reinhardt, and W. A. Anderson, J. Appl. Phys. 68, 3475 (1990).

    Article  Google Scholar 

  13. W. X. Chen, M. H. Yuan, K. Wu, Y. X. Zhang, Z. M. Wang, and G. G. Qin, J. Appl. Phys. 78, 584 (1995).

    Article  Google Scholar 

  14. S. Asubay, O. Gullu, and A. Turut, Appl. Surf. Sci. 254, 3558 (2008).

    Article  Google Scholar 

  15. C. Varenne, J. Brunet, A. Pauly, and B. Lauron, Physica B 404, 1082 (2009).

    Article  Google Scholar 

  16. V. Janardhanam, H.-K. Lee, K. H. Shim, H. B. Hong, S. H. Lee, K. S. Ahn, and C. J. Choi, J. Alloys. Compd. 504, 146 (2010).

    Article  Google Scholar 

  17. S. Asubay, Microelectron. Eng. 88, 109 (2011).

    Article  Google Scholar 

  18. D. Korucu and S. Duman, Thin Solid Films 531, 43 (2013).

    Article  Google Scholar 

  19. A. Ashok Kumar, L. Dasaradha Rao, V. Rajagopal Reddy, and C.-J. Choi, Curr. Appl. Phys. 13, 975 (2013).

    Article  Google Scholar 

  20. V. Rajagopal Reddy, L. Dasaradha Rao, V. Janardhanam, M.-S. Kang, and C. J. Choi, Mater. Trans. 54, 2173 (2013).

    Article  Google Scholar 

  21. E. H. Rhoderick and T. H. Williams, Metal-semiconductor Contacts, Second Edition, Clarendon Press, Oxford (1988).

    Google Scholar 

  22. S. M. Sze, Physics of Semiconductor Devices, Second Edition, Wiley, New York (1981).

    Google Scholar 

  23. R. H. Williams and G. Y. Robinson, in Wilmsen CW (Ed.), Physics and Chemistry of III–V Compound Semiconductor Interfaces, Plenum, New York (1985).

    Google Scholar 

  24. S. Asubay, O. Gullu, and A. Turut, Vacuum 83, 1470 (2009).

    Article  Google Scholar 

  25. D. T. Quan and H. Hbib, Solid-State Electron. 36, 85 (1993).

    Article  Google Scholar 

  26. S. K. Cheung and N. W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  27. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  Google Scholar 

  28. S. Aydogan, M. Saglam, and A. Turut, Vacuum 77, 269 (2005).

    Article  Google Scholar 

  29. J. H. Werner and H. H. Guttler, J. Appl. Phys. 69, 1522 (1991).

    Article  Google Scholar 

  30. M. Siad, A. Keffous, S. Mamma, Y. Belkacem, and H. Menari, Appl. Surf. Sci. 236, 366 (2004).

    Article  Google Scholar 

  31. M. Okutan, E. Basaran, and F. Yakuphanoglu, Appl. Surf. Sci. 252, 1966 (2005).

    Article  Google Scholar 

  32. S. Forment, R. L. Van Meirhaeghe, A. DeVrieze, K. Strubbe, and W. P. Gomes, Semicond. Sci. Technol. 16, 975 (2001).

    Article  Google Scholar 

  33. J. C. Card and E. H. Rhoderick, J. Phys. D 4, 1589 (1971).

    Article  Google Scholar 

  34. A. Turut, M. Saglam, H. Efeglu, N. Yalcin, M. Yildirim, and B. Abay, Physica B 205, 41 (1995).

    Article  Google Scholar 

  35. S. Karatas, S. Altindal, and M. Cakar, Physica B 357, 386 (2005).

    Article  Google Scholar 

  36. W. Monch, Semiconductor Surfaces and Interfaces, Third Edition, Springer, Berlin (2001).

    Book  Google Scholar 

  37. T. S. Haung and R. S. Fang, Solid-State Electron. 37, 1461 (1994).

    Article  Google Scholar 

  38. V. Van de Walle, R. L. Van Meirhaeghe, W. H. Laflere, and F. Cardon, J. Appl. Phys. 74, 1885 (1993).

    Article  Google Scholar 

  39. V. Janardhanam, A. Ashok Kumar, V. Rajagopal Reddy, and P. Narasimha Reddy, Surf. Interface. Anal. 41, 905 (2009).

    Article  Google Scholar 

  40. S. Sankar Naik, V. Rajagopal Reddy, C.-J. Choi, and J. S. Bae, J. Mater. Sci. 46, 558 (2011).

    Article  Google Scholar 

  41. V. Lakshmi Devi, I. Jyothi, V. Rajagopal Reddy, and C.-J. Choi, Phys. Status Solidi A 209, 105 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Rajagopal Reddy or Chel-Jong Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopal Reddy, V., Sri Silpa, D., Janardhanam, V. et al. Rapid thermal annealing effects on the electrical, structural and morphological properties of Yb/p-type InP Schottky Structure. Electron. Mater. Lett. 11, 73–81 (2015). https://doi.org/10.1007/s13391-014-1368-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-1368-y

Keywords

Navigation