Skip to main content
Log in

Effects of Annealing on Electrical Characteristics and Current Transport Mechanisms of the Y/p-GaN Schottky Diode

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study investigates the effects of annealing on the electrical properties and current transport mechanism of Y/p-GaN Schottky barrier diodes (SBDs). We found no significant change in the surface morphology of the Y Schottky contacts during the annealing process. The Schottky barrier height (SBH) of the as-deposited Y/p-GaN SBD was estimated to be 0.95 eV (IV)/1.19 eV (CV). The SBH increased upon annealing at 400°C and 500°C, and then decreased slightly with annealing at 600°C. Thus the maximum SBH of the Y/p-GaN SBD was achieved at 500°C, with values of 1.01 eV (IV)/1.29 eV (CV). In addition, the SBH values were estimated by Cheung’s, Norde, and Ψs-V plots and were found to be in good agreement with one another. Series resistance (R S) values were also calculated by IV, Cheung’s, and Norde functions at different annealing temperatures, with results showing a decrease in the interface state density of the SBD with annealing at 500°C, followed by a slight increase upon annealing at 600°C. The forward-bias current transport mechanism of SBD was investigated by the logI–logV plot at different annealing temperatures. Our investigations revealed that the Poole–Frenkel emission mechanism dominated the reverse leakage current in Y/p-GaN SBD at all annealing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.H. Huang, S.H. Yeh, C.T. Lee, H. Tang, J. Bardwell, and J.B. Webb, IEEE Electron Devices Lett. 29, 284 (2008).

    Article  Google Scholar 

  2. T. Miyajima, H. Watanabe, M. Ikeda, and H. Yokoyama, Appl. Phys. Lett. 94, 161103 (2009).

    Article  Google Scholar 

  3. B.J. Kim, Y.R. Ryu, T.S. Lee, and H.W. White, Appl. Phys. Lett. 94, 103506 (2009).

    Article  Google Scholar 

  4. T.K. Kim, S.H. Kim, S.S. Yang, J.K. Son, K.H. Lee, Y.G. Hong, K.H. Shim, J.W. Yang, K.Y. Lim, S.J. Bae, and G.M. Yang, Appl. Phys. Lett. 94, 161107 (2009).

    Article  Google Scholar 

  5. W.D. Hu, X.S. Chen, F. Yin, J.B. Zhang, and W. Lu, J.␣Appl. Phys. 105, 084502 (2009).

    Article  Google Scholar 

  6. K. Takahashi, J.P. Ao, Y. Ikawa, C.Y. Hu, H. Kawai, N. Shinohara, N. Niwa, and Y. Ohno, Jpn. J. Appl. Phys. 48, 04C095 (2009).

    Google Scholar 

  7. Z. Chen, Y. Pei, S. Newman, R. Chu, D. Brown, R. Chung, S. Keller, S.P. Denbaars, S. Nakamura, and U.K. Mishra, Appl. Phys. Lett. 94, 112108 (2009).

    Article  Google Scholar 

  8. K.P. Korona, A. Drabinska, P. Caban, and W. Strupinski, J. Appl. Phys. 105, 083712 (2009).

    Article  Google Scholar 

  9. J.C. Lin, Y.K. Su, S.J. Chang, W.H. Lan, K.C. Huang, W.R. Chen, C.Y. Huang, W.C. Lai, W.J. Lin, and Y.C. Cheng, Appl. Phys. Lett. 91, 173502 (2007).

    Article  Google Scholar 

  10. A.C. Schmitz, A.T. Ping, M.A. Khan, Q. Chen, J.W. Yang, and I. Adesida, Semicond. Sci. Technol. 11, 1464 (1996).

    Article  Google Scholar 

  11. Q.Z. Liu and S.S. Lau, Solid State Electron. 42, 677 (1998).

    Article  Google Scholar 

  12. J. Wu, J. Appl. Phys. 106, 011101 (2009).

    Article  Google Scholar 

  13. K. Shiojimaa, Appl. Phys. Lett. 77, 2625 (2000).

    Article  Google Scholar 

  14. L.S. Yu, D. Qiao, L. Jia, and S.S. Lau, Appl. Phys. Lett. 79, 2731 (2001).

    Article  Google Scholar 

  15. Y.J. Lin, Appl. Phys. Lett. 86, 122109 (2005).

    Article  Google Scholar 

  16. C.K. Tan, A.A. Aziz, and F.K. Yam, Appl. Surf. Sci. 252, 5930 (2006).

    Article  Google Scholar 

  17. C.K. Tan, A.A. Aziz, Z. Hassan, F.K. Yam, and A.Y. Hudeish, Phys. Stat. Solid C 3, 1762 (2006).

    Article  Google Scholar 

  18. J.W. Kim and J.W. Lee, Appl. Surf. Sci. 250, 247 (2005).

    Article  Google Scholar 

  19. Y. Fukushima, K. Ogisu, M. Kuzuhara, and K. Shiojima, Phys. Stat. Solid C 6, S856 (2009).

    Article  Google Scholar 

  20. G. Greco, P. Prystawko, M. Leszczynski, R.L. Nigro, V. Raineri, and F. Roccaforte, J. Appl. Phys. 110, 123703 (2011).

    Article  Google Scholar 

  21. S.-H. Jang and J.-S. Jang, Electron. Mater. Lett. 9, 245 (2013).

    Article  Google Scholar 

  22. Y.-Y. Choi, S. Kim, M. Oh, H. Kim, and T.-Y. Seong, Superlattices Microstruct. 77, 76 (2015).

    Article  Google Scholar 

  23. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts (Clarendon: Oxford, 1988), p. 121.

    Google Scholar 

  24. S. Altindal, S. Karadeniz, N. Tugluoglu, and A. Tataroglu, Solid State Electron. 47, 1847 (2003).

    Article  Google Scholar 

  25. R.T. Tung, Phys. Rev. B 45, 13502 (1992).

    Article  Google Scholar 

  26. S.M. Sze, Physics of Semiconductor Devices (Willey: New York, 1981), p. 279.

    Google Scholar 

  27. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  28. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  Google Scholar 

  29. X. Zhang, F. Hai, T. Zhang, C. Jia, X. Sun, L. Ding, and W. Zhang, Microelectron. Eng. 93, 5 (2012).

    Article  Google Scholar 

  30. S. Sonmezoglu, S. Senkul, R. Tas, G. Cankaya, and M. Can, Solid Stat. Sci. 12, 706 (2010).

    Article  Google Scholar 

  31. P. Chattopadhyay, Solid State Electron. 38, 739 (1995).

    Article  Google Scholar 

  32. G.D. Mohan, J. Appl. Phys. 55, 980 (1984).

    Article  Google Scholar 

  33. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflere, and F. Cardon, Solid State Electron. 29, 633 (1986).

    Article  Google Scholar 

  34. J.H. Werner and H.H. Guttler, J. Appl. Phys. 69, 1522 (1991).

    Article  Google Scholar 

  35. B. Boyarbay, H. Cetin, M. Kaya, and E. Ayyildiz, Microelectron. Eng. 85, 721 (2008).

    Article  Google Scholar 

  36. G. Nagaraju, L.D. Rao, and V.R. Reddy, Appl. Phys. A121, 131 (2015).

    Article  Google Scholar 

  37. R. Padma, G. Nagaraju, V.R. Reddy, and C.J. Choi, Thin Solid Films 598, 236 (2016).

    Article  Google Scholar 

  38. L. Geng, F.A. Ponce, S. Tanaka, H. Omiya, and Y. Nakagawa, Phys. Stat. Solid A 188, 803 (2001).

    Article  Google Scholar 

  39. H.C. Card and E.H. Rhoderick, J. Phys. D. Appl. Phys. 4, 1589 (1971).

    Google Scholar 

  40. O. Gullu and A. Turut, J. Appl. Phys 106, 103717 (2009).

    Article  Google Scholar 

  41. S. Wagle and V. Shirodkar, Braz. J. Phys. 30, 380 (2000).

    Google Scholar 

  42. S. Aydogan, U. Incekara, A.R. Deniz, and A. Turut, Microelectron. Eng. 87, 2525 (2010).

    Article  Google Scholar 

  43. V.R. Reddy, V. Janardhanam, J.-W. Ju, H.-J. Yun, and C.-J. Choi, Solid State Commun. 179, 34 (2014).

    Article  Google Scholar 

  44. S.M. El-Sayed, H.M.A. Hamid, and R.M. Radwan, Radiat. Phys. Chem. 69, 339 (2004).

    Article  Google Scholar 

  45. T.T. BenJomaa, L. Beji, A. Ltaeif, and A. Bouazizi, Mater. Sci. Eng. C 26, 530 (2006).

    Article  Google Scholar 

  46. H.D. Lee and I.E.E.E. Trans, Electron. Dev. 47, 762 (2000).

    Article  Google Scholar 

  47. V. Janardhanam, H.K. Lee, K.H. Shim, H.B. Hong, S.H. Lee, K.S. Ahn, and C.J. Choi, J. Alloys Compd. 504, 146 (2010).

    Article  Google Scholar 

  48. A.A. Kumar, V.R. Reddy, V. Janardhanam, H.-D. Yang, H.-J. Yun, and C.-J. Choi, J. Alloys Compd. 549, 18 (2013).

    Article  Google Scholar 

  49. V.R. Reddy, V. Janardhanam, J.-W. Ju, H. Hong, and C.-J. Choi, Semicond. Sci. Technol. 29, 075001 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Converging Research Center Program (2014M3C1A8048834) and the Research Support Project of the Electronics and Telecommunications Research Institute (ETRI; Grant No. B0132-15-1001) through the Ministry of Science, ICT & Future Planning, Republic of Korea. It was also supported by the Basic Science Research Program (NRF-2015R1A6A1A04020421) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajagopal Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, V.R., Asha, B. & Choi, CJ. Effects of Annealing on Electrical Characteristics and Current Transport Mechanisms of the Y/p-GaN Schottky Diode. J. Electron. Mater. 45, 3268–3277 (2016). https://doi.org/10.1007/s11664-016-4490-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4490-9

Keywords

Navigation