Skip to main content
Log in

Investigations and Optimization of Cold Metal Transfer-based WAAM Process Parameters for Fabrication of Inconel 718 Samples using Response Surface Methodology

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article outlines techniques for optimizing input parameters for the welding process, such as welding current, speed, and gas flow rate in relation to weld bead geometry and Dilution, using Response Surface Methodology (RSM). In the wire arc additive manufacturing (WAAM) process, single-weld bead stability and quality play a prominent role in the final manufactured part's quality and shape. A single-bead geometry model was initially established using RSM, and experiments were carried out using a central composite design of experiments for depositing Inconel 718 in WAAM. The design factors and responses were analyzed using multiple regression equations, and the validity of the resulting regression equations was evaluated using ANOVA. The researchers fabricated a multi-layer structure with optimal parameters, including a welding current of 210 A, 6.91 mm/s speed, and a gas flow rate of 25 l/min. Optical microscopy characterized the microstructures, revealing small dendritic grains in the top layer, equiaxed in the middle and side regions, and columnar in the lower region. The current study benefits industrial applications for developing the Inconel 718 superalloy WAAM structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sonar, T.; Balasubramanian, V.; Malarvizhi, S.; Venkateswaran, T.; Sivakumar, D.: An overview on welding of inconel 718 alloy - effect of welding processes on microstructural evolution and mechanical properties of joints. Mater Charact 174, 110997 (2021)

    Article  Google Scholar 

  2. Huan, P.C.; Wang, X.N.; Zhang, Q.Y.; Di, H.S.; Chen, X.M.; Chen, Y.; Wei, X.: Study on droplet transition behavior, bead geometric characteristics and formability of wire + arc additively manufactured inconel 718 alloy by using CMT MIX+ synchropulse process. J. Market. Res. 17, 1831–1841 (2022)

    Google Scholar 

  3. Wang, T.; Mazánová, V.; Liu, X.: Ultrasonic effects on gas tungsten arc based wire additive manufacturing of aluminum matrix nanocomposite. Mater. Des. 214, 110393 (2022)

    Article  Google Scholar 

  4. Elmer, J.W.; Fisher, K.; Gibbs, G.; Sengthay, J.; Urabe, D.: Post-build thermomechanical processing of wire arc additively manufactured stainless steel for improved mechanical properties and reduction of crystallographic texture. Addit. Manuf. 50, 102573 (2022)

    Google Scholar 

  5. Horgar, A.; Fostervoll, H.; Nyhus, B.; Ren, X.; Eriksson, M.; Akselsen, O.M.: Additive manufacturing using WAAM with AA5183 wire. J. Mater. Process. Technol. 259, 68–74 (2018)

    Article  Google Scholar 

  6. Bermingham, M.J.; StJohn, D.H.; Krynen, J.; Tedman-Jones, S.; Dargusch, M.S.: Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Mater. 168, 261–274 (2019)

    Article  Google Scholar 

  7. Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H.; Xu, J.; Norrish, J.: A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J. Manuf. Process. 35, 127–139 (2018)

    Article  Google Scholar 

  8. Kumar, P.; Maji, K.: Experimental Investigations and Parametric Effects on Depositions of Super Duplex Stainless Steel in Wire Arc Additive Manufacturing. In: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, p. 095440892311582 (2023)

  9. Dongari, S.; Davidson, M.J.: Multi response optimization of inconel 625 wire arc deposition for development of additive manufactured components using grey relational analysis (GRA). Metall. Mater. Eng. (2021). https://doi.org/10.30544/586

    Article  Google Scholar 

  10. Kumar, A.; Maji, K.: Selection of process parameters for near-net shape deposition in wire arc additive manufacturing by genetic algorithm. J. Mater. Eng. Perform. 29(5), 3334–3352 (2020)

    Article  Google Scholar 

  11. Youheng, F.; Guilan, W.; Haiou, Z.; Liye, L.: Optimization of surface appearance for wire and arc additive manufacturing of bainite steel. Int. J. Adv. Manufact. Techn. 91(1–4), 301–313 (2017)

    Article  Google Scholar 

  12. Geng, H.; Xiong, J.; Huang, D.; Lin, X.; Li, J.: A prediction model of layer geometrical size in wire and arc additive manufacture using response surface methodology. Int. J. Adv. Manufact. Technol. 93(1–4), 175–186 (2017)

    Article  Google Scholar 

  13. Le, V.T.; Doan, Q.T.; Mai, D.S.; Bui, M.C.; Tran, H.S.; Van Tran, X.; Nguyen, V.A.: Prediction and optimization of processing parameters in wire and arc-based additively manufacturing of 316L stainless steel. J. Braz. Soc. Mech. Sci. Eng. 44(9), 394 (2022)

    Article  Google Scholar 

  14. Su, C.; Chen, X.; Gao, C.; Wang, Y.: Effect of heat input on microstructure and mechanical properties of Al-Mg alloys fabricated by WAAM. Appl. Surf. Sci. 486, 431–440 (2019)

    Article  Google Scholar 

  15. Kannan, A.R.; Kumar, S.M.; Pramod, R.; Shanmugam, N.S.; Vishnukumar, M.; Channabasavanna, S.G.: Microstructure and corrosion resistance of Ni-Cu alloy fabricated through wire arc additive manufacturing. Mater. Lett. 308, 131262 (2022)

    Article  Google Scholar 

  16. Wang, Y.; Chen, X.; Shen, Q.; Su, C.; Zhang, Y.; Jayalakshmi, S.; Singh, R.A.: Effect of magnetic field on the microstructure and mechanical properties of inconel 625 superalloy fabricated by wire arc additive manufacturing. J. Manuf. Process. 64, 10–19 (2021)

    Article  Google Scholar 

  17. Veeman, D.; Alruqi, M.; Kumar Subramaniyan, M.; Shanmugam Nallathambhi, S.; Agnelo Browne, M.; Kamaraj, A.: Fabrication of functionally graded material via gas tungsten arc welding based wire feeding additive manufacturing: mechanical and microstructural characterization. Mater. Lett. 324, 132786 (2022)

    Article  Google Scholar 

  18. Corradi, D.R.; Bracarense, A.Q.; Wu, B.; Cuiuri, D.; Pan, Z.; Li, H.: Effect of magnetic arc oscillation on the geometry of single-pass multi-layer walls and the process stability in wire and arc additive manufacturing. J. Mater. Process. Technol. 283, 116723 (2020)

    Article  Google Scholar 

  19. Zhang, T.; Li, H.; Gong, H.; Ding, J.; Wu, Y.; Diao, C.; Zhang, X.; Williams, S.: Hybrid wire - arc additive manufacture and effect of rolling process on microstructure and tensile properties of inconel 718. J. Mater. Process. Technol. 299, 117361 (2022)

    Article  Google Scholar 

  20. Wang, C.; Suder, W.; Ding, J.; Williams, S.: The effect of wire size on high deposition rate wire and plasma arc additive manufacture of Ti-6Al-4V. J. Mater. Process. Technol. 288, 116842 (2021)

    Article  Google Scholar 

  21. Martina, F.; Ding, J.; Williams, S.; Caballero, A.; Pardal, G.; Quintino, L.: Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel. Addit. Manuf. 25, 545–550 (2019)

    Google Scholar 

  22. Choudhury, S.S.; Marya, S.K.; Amirthalingam, M.: Improving arc stability during wire arc additive manufacturing of thin-walled titanium components. J. Manuf. Process. 66, 53–69 (2021)

    Article  Google Scholar 

  23. Li, R.; Xiong, J.: Influence of interlayer dwell time on stress field of thin-walled components in WAAM via numerical simulation and experimental tests. Rapid. Prototyp. J. 25(8), 1433–1441 (2019)

    Article  Google Scholar 

  24. Dinovitzer, M.; Chen, X.; Laliberte, J.; Huang, X.; Frei, H.: Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Addit. Manuf. 26, 138–146 (2019)

    Google Scholar 

  25. Belotti, L.P.; van Dommelen, J.A.W.; Geers, M.G.D.; Ya, W.; Hoefnagels, J.P.M.: Influence of the printing strategy on the microstructure and mechanical properties of thick-walled wire arc additive manufactured stainless steels. J. Mater. Process. Technol. 324, 118275 (2024)

    Article  Google Scholar 

  26. Montgomery, D.C.; Wiley, J.: Design and analysis of experiments. Wiley, Hoboken (2017)

    Google Scholar 

  27. Kattimani, M.A.; Venkatesh, P.R.; Masum, H.; Math, M.M.; Bahadurdesai, V.N.; Mustafkhadri, S.; Prasad, C.D.; Vasudev, H.: Design and numerical analysis of tensile deformation and fracture properties of induction hardened inconel 718 superalloy for gas turbine applications. Int. J. Interact. Des. Manufact. (IJIDeM) (2023). https://doi.org/10.1007/s12008-023-01452-z

    Article  Google Scholar 

  28. Butola, R.; Dev Pandey, K.; Murtaza, Q.; Walia, R.S.; Tyagi, M.; Srinivas, K.; Chaudhary, A.K.: Experimental Analysis and Optimization of Process Parameters Using Response Surface Methodology of Surface Nanocomposites Fabricated by Friction Stir Processing. In: Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, p. 239779142311514 (2023)

  29. Sarathchandra, D.T.; Davidson, M.J.; Visvanathan, G.: Parameters effect on SS304 beads deposited by wire arc additive manufacturing. Mater. Manuf. Processes 35(7), 852–858 (2020)

    Article  Google Scholar 

  30. Kannan, T.; Yoganandh, J.: Effect of process parameters on clad bead geometry and its shape relationships of stainless steel claddings deposited by GMAW. Int. J. Adv. Manufact. Technol. 47(9–12), 1083–1095 (2010)

    Article  Google Scholar 

  31. Rao, P.S.; Gupta, O.P.; Murty, S.S.N.; Rao, A.K.: Effect of process parameters and mathematical model for the prediction of bead geometry in pulsed GMA welding. Int. J. Adv. Manufact. Technol. 45, 496–505 (2009)

    Article  Google Scholar 

  32. Nagesh, D.S.; Datta, G.L.: Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. J. Mater. Process. Technol. 123(2), 303–312 (2002)

    Article  Google Scholar 

  33. Meena, S.L.; Butola, R.; Khan, M.A.; Walia, R.S.; Murtaza, Q.: Influence of process parameters in synergic MIG welding of 304L stainless steel using response surface methodology. Adv. Mater. Process. Technol. 9(1), 196–205 (2023)

    Google Scholar 

  34. Palani, P.K.; Murugan, N.: Development of mathematical models for prediction of weld bead geometry in cladding by flux cored arc welding. Int. J. Adv. Manufact. Technol. 30(7–8), 669–676 (2006)

    Article  Google Scholar 

  35. Jindal, S.; Chhibber, R.; Mehta, N.P.: Effect of welding parameters on bead profile, microhardness and H2 content in submerged arc welding of high-strength low-alloy steel. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 228(1), 82–94 (2014)

    Article  Google Scholar 

  36. Rodrigues, T.A.; Duarte, V.R.; Tomás, D.; Avila, J.A.; Escobar, J.D.; Rossinyol, E.; Schell, N.; Santos, T.G.; Oliveira, J.P.: In-situ strengthening of a high strength low alloy steel during wire and arc additive manufacturing (WAAM). Addit. Manuf. 34, 101200 (2020)

    Google Scholar 

  37. Wang, J.F.; Sun, Q.J.; Wang, H.; Liu, J.P.; Feng, J.C.: Effect of location on microstructure and mechanical properties of additive layer manufactured inconel 625 using gas tungsten arc welding. Mater. Sci. Eng. A 676, 395–405 (2016)

    Article  Google Scholar 

  38. Zeng, Z.; Cong, B.Q.; Oliveira, J.P.; Ke, W.C.; Schell, N.; Peng, B.; Qi, Z.W.; Ge, F.G.; Zhang, W.; Ao, S.S.: Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: microstructure and mechanical properties. Addit. Manuf. 32, 101051 (2020)

    Google Scholar 

  39. Fang, X.Y.; Li, H.Q.; Wang, M.; Li, C.; Guo, Y.B.: Characterization of texture and grain boundary character distributions of selective laser melted inconel 625 alloy. Mater Charact 143, 182–190 (2018)

    Article  Google Scholar 

  40. Yangfan, W.; Xizhang, C.; Chuanchu, S.: Microstructure and mechanical properties of inconel 625 fabricated by wire-arc additive manufacturing. Surf. Coat. Technol. 374, 116–123 (2019)

    Article  Google Scholar 

  41. Gao, C.; Chen, X.; Su, C.; Chen, X.: Location dependence of microstructure and mechanical properties on wire arc additively manufactured nuclear grade steel. Vacuum 168, 108818 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rp was involved in data collection, draft preparation, and paper writing. NY participated in editing and reviewing. V was involved in visualization and final approval.

Corresponding author

Correspondence to Rajendra Prasad Meena.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s) for this research work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, R.P., Yuvaraj, N. & Vipin, V. Investigations and Optimization of Cold Metal Transfer-based WAAM Process Parameters for Fabrication of Inconel 718 Samples using Response Surface Methodology. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08947-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08947-1

Keywords

Navigation