Skip to main content
Log in

Ag/AgBr coupled low crystalline Nb2O5 as an effective photocatalyst for the degradation of rhodamine B

  • Functional Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel Ag/AgBr/Nb2O5 heterojunction photocatalyst was successfully developed via a facile solvothermal method combined with deposition–precipitation. The morphology and composition of the Ag/AgBr/Nb2O5 photocatalyst were investigated by transmission electron microscopy and X-ray energy-dispersive spectrometry, respectively. The results showed that metallic Ag was formed on the surface of the AgBr by an in situ photoreaction. The low crystalline Nb2O5 (L-Nb2O5) substrate provides the photocatalyst with a high specific area and numerous active sites for catalysis, while the combination of the Ag/AgBr with L-Nb2O5 effectively facilitates the separation of photo-generated charge carriers. The photocatalytic activities of the samples were measured using the degradation of an aqueous solution of rhodamine B under different LEDs with UV (365 nm), yellow (595 nm), and white (400 nm ≤ λ ≤ 800 nm) light. The Ag/AgBr/L-Nb2O5 photocatalyst displayed a much higher photocatalytic activity than bare L-Nb2O5 under UV and visible-light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. R. Kodama, Y. Terada, I. Nakai, S. Komaba, and N. Kumagai: Electrochemical and in situ XAFS-XRD investigation of Nb2O5 for rechargeable lithium batteries. J. Electrochem. Soc.153, 583–588 (2006).

    Article  CAS  Google Scholar 

  2. S. Ramakrishna, A. Le Viet, M.V. Reddy, R. Jose, and B.V.R. Chowdari: Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J. Phys. Chem. C114, 664–674 (2010).

    Article  CAS  Google Scholar 

  3. X. Wang, G. Li, Z. Chen, V. Augustyn, X. Ma, G. Wang, B. Dunn, and Y. Lu: High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv. Energy Mater.1, 1089–1093 (2011).

    Article  CAS  Google Scholar 

  4. Y. Tao, Y. Wei, Y. Liu, J. Wang, W. Qiao, L. Ling, and D. Long: Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery. Energy Environ. Sci, 9, 3230–3239 (2016).

    Article  CAS  Google Scholar 

  5. R.M. Silva, B.S. Noremberg, N.H. Marins, J. Milne, I. Zhitomirsky, and N.L.V. Carreño: Microwave-assisted hydrothermal synthesis and electrochemical characterization of niobium pentoxide/carbon nanotubes composites. J. Mater. Res.34, 592–599 (2019).

    Article  CAS  Google Scholar 

  6. H. Liu, N. Gao, M. Liao, and X. Fang: Hexagonal-like Nb2O5 Nanoplates-based photodetectors and photocatalyst with high performances. Sci. Rep. 5, 7716 (2015).

    CAS  Google Scholar 

  7. P. Zhang, M. Wang, J. Wang, X. Teng, S. Zhang, H. Xie, and S. Ding: Facile synthesis and characterization of low crystalline Nb2O5 ultrafine nanoparticles as a new efficient photocatalyst. J. Non-Cryst. Solids500, 371–376 (2018).

    Article  CAS  Google Scholar 

  8. N. Özer, D.G. Chen, and C.M. Lampert: Preparation and properties of spin-coated Nb2O5 films by the sol-gel process for electrochromic applications. Thin Solid Films277, 162–168 (1996).

    Article  Google Scholar 

  9. K. Yoshimura, T. Miki, S. Iwama, and S. Tanemura: Characterization of niobium oxide electrochromic thin films prepared by reactive d.c. magnetron sputtering. Thin Solid Films281–282, 235–238 (1996).

    Article  Google Scholar 

  10. Y. Zhou, Z. Qiu, M. Lü, A. Zhang, and Q. Ma: Preparation and spectroscopic properties of Nb2O5 nanorods. J. Lumin.128, 1369–1372 (2008).

    Article  CAS  Google Scholar 

  11. A. Esteves, L.C.A. Oliveira, T.C. Ramalho, M. Goncalves, A.S. Anastacio, and H.W.P. Carvalho: New materials based on modified synthetic Nb2O5 as photocatalyst for oxidation of organic contaminants. Catal. Commun.10, 330–332 (2008).

    Article  CAS  Google Scholar 

  12. H.Y. Lin, H.C. Yang, and W.L. Wang: Synthesis of mesoporous Nb2O5 photocatalysts with Pt, Au, Cu and NiO cocatalyst for water splitting. Catal. Today174, 106–113 (2011).

    Article  CAS  Google Scholar 

  13. S. Zarrin and F. Heshmatpour: Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants. J. Hazard. Mater.351, 147–159 (2018).

    Article  CAS  Google Scholar 

  14. L.C.A. Oliveira, H.S. Oliveira, G. Mayrink, H.S. Mansur, A.A.P. Mansur, and R.L. Moreira: One-pot synthesis of CdS@Nb2O5 core-shell nanostructures with enhanced photocatalytic activity. Appl. Catal. B Environ.152–153, 403–412 (2014).

    Article  CAS  Google Scholar 

  15. S.M. Lam, J.C. Sin, I. Satoshi, A.Z. Abdullah, and A.R. Mohamed: Enhanced sunlight photocatalytic performance over Nb2O5/ZnO nanorod composites and the mechanism study. Appl. Catal. A Gen.471, 126–135 (2014).

    Article  CAS  Google Scholar 

  16. R. Shao, X. Zeng, Z. Cao, H. Dong, L. Wang, F. Wang, J. Liu, Z. Li, and Q. Liang: A novel Ag3PO4/ Nb2O5 fiber composite with enhanced photocatalytic performance and stability. RSC Adv.5, 102101–102107 (2015).

    Article  CAS  Google Scholar 

  17. Q. Cheng, X. Deng, H. Zhang, R. Guo, Y. Cui, Q. Ma, X. Zhang, X. Cheng, M. Xie, and B. Li: Microwave assisted construction of Ag-AgBr/reduced TiO2 nano-tube arrays photoelectrode and its enhanced visible light photocatalytic performance for degradation of 4-chlorophenol. Sep. Purif. Technol.193, 255–263 (2018).

    Article  CAS  Google Scholar 

  18. P. Zhang, Z. Dong, Y. Ran, H. Xie, Y. Lu, and S. Ding: Preparation and photocatalytic application of AgBr modified Bi2WO6 nanosheets with high adsorption capacity. J. Mater. Res.33, 3953–3962 (2018).

    Article  CAS  Google Scholar 

  19. X. Miao, Z. Ji, J. Wu, X. Shen, J. Wang, L. Kong, M. Liu, and C. Song: G-C3N4/AgBr nanocomposite decorated with carbon dots as a highly efficient visible-light-driven photocatalyst. J. Colloid Interface Sci.502, 24–32 (2017).

    Article  CAS  Google Scholar 

  20. Y. Cai, S. Chang, Y. Liu, Y. Shen, F. Li, L. Li, S. Zhu, and X. Zheng: Hydrothermal-photoreduction synthesis of novel Ag@AgBr/BiVO4 plasmonic heterojunction photocatalysts with enhanced activity under white light emitting diode (wLED) irradiation. J. Mater. Sci. Mater. Electron.29(20), 17602–17611 (2018).

  21. X.J. Wen, C.G. Niu, L. Zhang, C. Liang, H. Guo, and G.-M. Zeng: Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2-Ag/AgBr photocatalyst: Influencing factors, possible degradation pathways, and mechanism insight. J. Catal.358, 141–154 (2018).

    Article  CAS  Google Scholar 

  22. F. Guo, W. Shi, H. Wang, M. Han, W. Guan, H. Huang, Y. Liu, and Z. Kang: Study on highly enhanced photocatalytic tetracycline degradation of type II AgI/CuBi2O4 and Z-scheme AgBr/CuBi2O4 heterojunction photocatalysts. J. Hazard. Mater.349, 111–118 (2018).

    Article  CAS  Google Scholar 

  23. X. Chen, T. Yu, X. Fan, H. Zhang, Z. Li, J. Ye, and Z. Zou: Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Appl. Surf. Sci.253, 8500–8506 (2007).

    Article  CAS  Google Scholar 

  24. X. Liu, Y. Zhu, W. Li, F. Wang, H. Li, C. Ren, and Y. Zhao: A novel Ag@AgBr-Ag2Mo3O10 ternary core-shell photocatalyst: Energy band modification and additional superoxide radical production. Appl. Surf. Sci.458, 1–9 (2018).

    Article  CAS  Google Scholar 

  25. Y. Xu, Q. Liu, C. Liu, Y. Zhai, M. Xie, L. Huang, H. Xu, H. Li, and J. Jing: Visible-light-driven Ag/AgBr/ZnFe2O4 composites with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation. J. Colloid Interface Sci.512, 555–566 (2018).

    Article  CAS  Google Scholar 

  26. Y. Kang, Y. Yang, L.-C. Yin, X. Kang, G. Liu, and H.-M. Cheng: An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for rhotocatalytic hydrogen generation. Adv. Mater.27, 4572–4577 (2015).

    Article  CAS  Google Scholar 

  27. Z.P. Chen, J. Xing, H.B. Jiang, and H.G. Yang: Disordered Co1.28Mn1.71O4 as a visible-light-responsive photocatalyst for hydrogen evolution. Chem. Eur. J.19, 4123–4127 (2013).

    Article  CAS  Google Scholar 

  28. D. Das, D. Banerjee, B. Das, N.S. Das, and K.K. Chattopadhyay: Effect of cobalt doping into graphitic carbon nitride on photo induced removal of dye from water. Mater. Res. Bull.89, 170–179 (2017).

    Article  CAS  Google Scholar 

  29. T. Li, S. Luo, and L. Yang: Microwave-assisted solvothermal synthesis of flower-like Ag/AgBr/BiOBr microspheres and their high efficient photocatalytic degradation for p-nitrophenol. J. Solid State Chem.206, 308–316 (2013).

    Article  CAS  Google Scholar 

  30. H. Li, H. Zhu, M. Wang, X. Min, M. Fang, Z. Huang, Y. Liu, and X. Wu: A new Ag/Bi7Ta3O18 plasmonic photocatalyst with a visible-light-driven photocatalytic activity. J. Mater. Res.32, 3650–3659 (2017).

    Article  CAS  Google Scholar 

  31. X. Jiang, Y. Ma, C. Zhao, Y. Chen, M. Cui, J. Yu, Y. Wu, and Y. He: Synthesis of flower-like AgI/Bi5O7I hybrid photocatalysts with enhanced photocatalytic activity in rhodamine B degradation. J. Mater. Res.33, 2385–2395 (2018).

    Article  CAS  Google Scholar 

  32. C. Wu: Facile room temperature synthesis of Ag@AgBr core-shell microspheres with high visible-light-driven photocatalytic performance. J. Mater. Res.30, 677–685 (2015).

    Article  CAS  Google Scholar 

  33. F. Zhang, L. Wang, M. Xiao, F. Liu, X. Xu, and E. Du: Construction of direct solid-state Z-scheme g-C3N4/BiOI with improved photocatalytic activity for microcystin-LR degradation. J. Mater. Res.33, 201–212 (2018).

    Article  CAS  Google Scholar 

  34. J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K.S.W. Sing: Adsorption by Powders and Porous Solids (Acad. Press, London, UK, 2014), pp. 159, 189.

  35. S. Guo, X. Zhang, Z. Zhou, G. Gao, and L. Liu: Facile preparation of hierarchical Nb2O5 microspheres with photocatalytic activities and electrochemical properties. J. Mater. Chem. A2, 9236–9243 (2014).

    Article  CAS  Google Scholar 

  36. J. Xue, R. Wang, Z. Zhang, and S. Qiu: Facile preparation of C, N co-modified Nb2O5 nanoneedles with enhanced visible light photocatalytic activity. Dalt. Trans.45, 16519–16525 (2016).

    Article  CAS  Google Scholar 

  37. G. Tian, H. Fu, L. Jing, and C. Tian: Synthesis and photocatalytic activity of stable nanocrystalline TiO2 with high crystallinity and large surface area. J. Hazard. Mater.161, 1122–1130 (2009).

    Article  CAS  Google Scholar 

  38. Y. Zhang, C. Han, G. Zhang, D.D. Dionysiou, and M.N. Nadagouda: PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine. Chem. Eng. J.268, 170–179 (2015).

    Article  CAS  Google Scholar 

  39. W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, and Q. Xu: Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. J. Mater. Chem.22, 4050 (2012).

    Article  CAS  Google Scholar 

  40. J. Tang, Z. Zou, and J. Ye: Photophysical and photocatalytic properties of AgInW2O8. J. Phys. Chem. B107, 14265–14269 (2003).

    Article  CAS  Google Scholar 

  41. I.A. Castro, W. Avansi, and C. Ribeiro: WO3/TiO2 heterostructures tailored by the oriented attachment mechanism: Insights from their photocatalytic properties. CrystEngComm16, 1514–1524 (2014).

    Article  Google Scholar 

  42. J. Ran, J. Zhang, J. Yu, and S.Z. Qiao: Enhanced visible-light photocatalytic H2 production by ZnxCd1‒xS modified with earth-abundant nickel-based cocatalysts. ChemSusChem7, 3426–3434 (2014).

    Article  CAS  Google Scholar 

  43. Y. Hou, A.B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, and I. Chorkendorff: Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem. Int. Ed.52, 3621–3625 (2013).

    Article  CAS  Google Scholar 

  44. Q. Li, H. Meng, J. Yu, W. Xiao, Y. Zheng, and J. Wang: Enhanced photocatalytic hydrogen-production performance of graphene-ZnxCd1-xS composites by using an organic S source. Chem. A Eur. J.20, 1176–1185 (2014).

    Article  CAS  Google Scholar 

  45. S. Trasatti: The absolute electrode potential: An explanatory note (Recommendations 1986). Pure Appl. Chem.58, 955–966 (1986).

    Article  CAS  Google Scholar 

  46. Y. Kim, S. Atherton, E. Brigham, and T. Mallouk: Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. J. Phys. Chem.97, 11802–11810 (1993).

    Article  CAS  Google Scholar 

  47. S. Wang, D. Li, C. Yang, G. Sun, J. Zhang, Y. Xia, C. Xie, G. Yang, M. Zhou, and W. Liu: A novel method for the synthesize of nanostructured MgFe2O4 photocatalysts. J. Sol-Gel Sci. Technol.84, 169–179 (2017).

    Article  CAS  Google Scholar 

  48. X. Li, J. Xie, C. Jiang, J. Yu, and P. Zhang: Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng.12, 14 (2018).

    Google Scholar 

  49. F. Wu, X. Li, W. Liu, and S. Zhang: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Surf. Sci.405, 60–70 (2017).

    Article  CAS  Google Scholar 

  50. R. Shen, C. Jiang, Q. Xiang, J. Xie, and X. Li: Surface and interface engineering of hierarchical photocatalysts. Appl. Surf. Sci.471, 43–87 (2019).

    Article  CAS  Google Scholar 

  51. W. Li, S. He, W. Xu, J. Li, and X. Wang: Synthesis of BiOCl-Ag/ AgBr heterojunction and its photoelectrochemical and photocatalytic performance. Electrochim. Acta283, 727–736 (2018).

    Article  CAS  Google Scholar 

  52. X. Li, D. Chen, N. Li, Q. Xu, H. Li, J. He, and J. Lu: AgBr-loaded hollow porous carbon nitride with ultrahigh activity as visible light photocatalysts for water remediation. Appl. Catal. B Environ.229, 155–162 (2018).

    Article  CAS  Google Scholar 

  53. X. Li, J. Yu, M. Jaroniec, and X. Chen: Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev.119, 3962–4179 (2019).

    Article  CAS  Google Scholar 

  54. X. Ke, K. Dai, G. Zhu, J. Zhang, and C. Liang: In situ photochemical synthesis noble-metal-free NiS on CdS-diethylenetriamine nanosheets for boosting photocatalytic H2 production activity. Appl. Surf. Sci.481, 669–677 (2019).

    Article  CAS  Google Scholar 

  55. H. Liu, M. Wang, Y. Wang, Y. Liang, W. Cao, and Y. Su: Ionic liquid-templated synthesis of mesoporous CeO2-TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. J. Photochem. Photobiol. A Chem.223, 157–164 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the postdoctoral fellowships from the China Scholarship Council (Grant No. 201708505127), the “Chunhui Project” of Ministry of Education of the People’s Republic of China (Grant No. Z2016175), and the Scientific Research Project of Fuling District (Grant No. FLKW, 2017ABA1007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Jian, X., Tan, J. et al. Ag/AgBr coupled low crystalline Nb2O5 as an effective photocatalyst for the degradation of rhodamine B. Journal of Materials Research 35, 1692–1702 (2020). https://doi.org/10.1557/jmr.2020.144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.144

Navigation