Skip to main content
Log in

Cobalt–zinc nanoferrite for synergistic photocatalytic and peroxymonosulfate-assisted degradation of sulfosalicylic acid

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work focuses on enhancing the photocatalytic activity of Co1−xZnxFe2O4 (cobalt-zinc nanoferrite) via peroxymonosulfate (PMS) activation for high-performance sulfosalicylic acid (SSA) degradation. The optimal Co0.7Zn0.3Fe2O4 (C2) sample led to the best photocatalytic performance for PMS activation under visible light. The photoluminescence and electrochemical impedance measurements confirmed the higher charge separation for C2 catalyst. The radical quenching and ESR tests revealed that SO4−• and OH radicals were the dominant reactive species with little contribution from singlet oxygen for SSA degradation. The presence of Fe3+/Fe2+ and Co3+/Co2+ redox cycles enhanced the PMS activation to a great extent. Interestingly, the hydroxyl radicals were generated via the PMS activation route and contributed to degradation. As a result, photocatalysis and PMS activation complemented one another and improved performance. The best catalyst was also tested for the photocatalytic activity coupled with PMS activation for other pollutants including bisphenol A, tetracycline, rhodamine B, and 2,4-dichlorophenol. Additionally, due to their strong ferromagnetism and stability, the ferrites can be readily isolated magnetically from treated waste water, indicating their potential application in large-scale wastewater treatment for various contaminants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Scheme 1
Scheme 2
Figure 11
Scheme 3
Scheme 4
Scheme 5
Figure 12
Scheme 6
Scheme 7
Figure 13
Figure 14

Similar content being viewed by others

Data availability

The data will be made available on request.

References

  1. Petala A, Mantzavinos D, Frontistis Z (2021) Impact of water matrix on the photocatalytic removal of pharmaceuticals by visible light active materials. Curr Opin Green Sustain Chem 28:100445. https://doi.org/10.1016/j.cogsc.2021.100445

    Article  CAS  Google Scholar 

  2. Orimolade BO, Idris AO, Feleni U, Mamba B (2021) Recent advances in degradation of pharmaceuticals using Bi2WO6 mediated photocatalysis—a comprehensive review. Environ Pollut 289:117891. https://doi.org/10.1016/j.envpol.2021.117891

    Article  CAS  Google Scholar 

  3. Marinho BA, Suhadolnik L, Likozar B, Huš M, Marinko Ž, Čeh M (2022) Photocatalytic, electrocatalytic and photoelectrocatalytic degradation of pharmaceuticals in aqueous media: analytical methods, mechanisms, simulations, catalysts and reactors. J Clean Prod 343:131061. https://doi.org/10.1016/j.jclepro.2022.131061

    Article  CAS  Google Scholar 

  4. Kanakaraju D, Glass BD, Oelgemöller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. Journal of environmental management. J Environ Manag 219:189. https://doi.org/10.1016/j.jenvman.2018.04.103

    Article  CAS  Google Scholar 

  5. Wang P, Liu C, Liu Y, Zhou G (2022) Photothermal-driven itinerant adsorption to accelerate self-repairing of reactive sites for efficient removal of salicylic acid. Sep Purif Technol 284:120251. https://doi.org/10.1016/j.seppur.2021.120251

    Article  CAS  Google Scholar 

  6. Xiao G, Wen R, Liu A, He G, Wu D (2017) Adsorption performance of salicylic acid on a novel resin with distinctive double pore structure. J Hazard Mater 329:77. https://doi.org/10.1016/j.jhazmat.2017.01.030

    Article  CAS  Google Scholar 

  7. Hu R, Zhang L, Hu J (2016) Study on the kinetics and transformation products of salicylic acid in water via ozonation. Chemosphere 153:394. https://doi.org/10.1016/j.chemosphere.2016.03.074

    Article  CAS  Google Scholar 

  8. Sun Y, Bai L, Wang T, Cao S, Han C, Sun X (2023) Effective scavenging and selective adsorption of salicylic acid from wastewater using a novel deep eutectic solvents-based chitosan-acrylamide surface molecularly imprinted hydrogel. Appl Surf Sci 15(608):155102. https://doi.org/10.1016/j.apsusc.2022.155102

    Article  CAS  Google Scholar 

  9. Gao X, Meng X (2021) Photocatalysis for heavy metal treatment: a review. Processes 9:1729

    Article  CAS  Google Scholar 

  10. Kousar T, Aadil M, Zulfiqar S et al (2022) Wet-chemical synthesis of nanostructured Ce-doped mixed metal ferrites for the effective removal of azo dyes from industrial discharges. Ceram Int. https://doi.org/10.1016/j.ceramint.2022.01.057

    Article  CAS  Google Scholar 

  11. Zhang F, Wei C, Wu K, Zhou H, Hu Y, Preis S (2017) Mechanistic evaluation of ferrite AFe2O4 (A = Co, Ni, Cu, and Zn) catalytic performance in oxalic acid ozonation. Appl Catal A 547:60

    Article  CAS  Google Scholar 

  12. Kumar A, Sharma G, Kumari A et al (2020) Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: boosting via I/I3− and Bi3+/Bi5+ redox mediators. Appl Catal B Environ 284:119808. https://doi.org/10.1016/j.apcatb.2020.119808

    Article  CAS  Google Scholar 

  13. Mecha AC, Chollom MN (2020) Photocatalytic ozonation of wastewater: a review. Environ Chem Lett 18:1491. https://doi.org/10.1007/s10311-020-01020-x

    Article  CAS  Google Scholar 

  14. Wu L, Wang C-C, Chu H-Y et al (2021) Bisphenol A cleanup over MIL-100(Fe)/CoS composites: Pivotal role of Fe–S bond in regenerating Fe2+ ions for boosted degradation performance. Chemosphere 280:130659. https://doi.org/10.1016/j.chemosphere.2021.130659

    Article  CAS  Google Scholar 

  15. Dhiman P, Rana G, Kumar A, Sharma G, Vo D-VN, Naushad M (2022) ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review. Environ Chem Lett 20:1047. https://doi.org/10.1007/s10311-021-01361-1

    Article  CAS  Google Scholar 

  16. Peng Y, Tang H, Yao B, Gao X, Yang X, Zhou Y (2021) A comparative study of activation of peroxymonosulfate and peroxydisulfate by greigite (Fe3S4) for the degradation of sulfamethazine in water. Chem Eng J 414:128800. https://doi.org/10.1016/j.cej.2021.128800

    Article  CAS  Google Scholar 

  17. Li D, Yao Z, Lin J et al (2022) Nano-sized FeVO4 1.1 H2O and FeVO4 for peroxymonosulfate activation towards enhanced photocatalytic activity. J Environ Chem Eng 10:107199. https://doi.org/10.1016/j.jece.2022.107199

    Article  CAS  Google Scholar 

  18. Chen X, Wang W, Xiao H et al (2012) Accelerated TiO2 photocatalytic degradation of acid orange 7 under visible light mediated by peroxymonosulfate. Chem Eng J 193:290

    Article  Google Scholar 

  19. Hassani A, Eghbali P, Mahdipour F, Wacławek S, Lin K-YA, Ghanbari F (2023) Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective bisphenol A degradation: performance, mineralization, and activation mechanism. Chem Eng J 453:139556. https://doi.org/10.1016/j.cej.2022.139556

    Article  CAS  Google Scholar 

  20. Yi X-H, Ji H, Wang C-C et al (2021) MIL-88A (Fe) composites for boosted chloroquine phosphate degradation: performance, mechanism, pathway and DFT calculations. Appl Catal B Environ 293:120229. https://doi.org/10.1016/j.apcatb.2021.120229

    Article  CAS  Google Scholar 

  21. Du A, Fu H, Wang P, Zhao C, Wang C-C (2022) Enhanced catalytic peroxymonosulfate activation for sulfonamide antibiotics degradation over the supported CoSx–CuSx derived from ZIF-L (Co) immobilized on copper foam. J Hazard Mater 426:128134. https://doi.org/10.1016/j.jhazmat.2021.128134

    Article  CAS  Google Scholar 

  22. Zhao C, Wang J, Chen X et al (2021) Bifunctional Bi12O17Cl2/MIL-100 (Fe) composites toward photocatalytic Cr (VI) sequestration and activation of persulfate for bisphenol A degradation. Sci Total Environ 752:141901. https://doi.org/10.1016/j.scitotenv.2020.141901

    Article  CAS  Google Scholar 

  23. Liu C, Mao S, Shi M et al (2021) Peroxymonosulfate activation through 2D/2D Z-scheme CoAl-LDH/BiOBr photocatalyst under visible light for ciprofloxacin degradation. J Hazard Mater 420:126613. https://doi.org/10.1016/j.jhazmat.2021.126613

    Article  CAS  Google Scholar 

  24. Wu Y, Mao S, Liu C et al (2022) Enhanced degradation of chloramphenicol through peroxymonosulfate and visible light over Z-scheme photocatalysts: synergetic performance and mechanism insights. J Colloid Interface Sci 608:322. https://doi.org/10.1016/j.jcis.2021.09.197

    Article  CAS  Google Scholar 

  25. Li C, Wu J, Peng W, Fang Z, Liu J (2019) Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/β-FeOOH nanocomposites: coexistence of radical and non-radical reactions. Chem Eng J 356:904. https://doi.org/10.1016/j.cej.2018.09.064

    Article  CAS  Google Scholar 

  26. Shi W, Liu Y, Sun W et al (2021) Assembling g-C3N4 nanosheets on rod-like CoFe2O4 nanocrystals to boost photocatalytic degradation of ciprofloxacin with peroxymonosulfate activation. Mater Today Commun 29:102871. https://doi.org/10.1016/j.mtcomm.2021.102871

    Article  CAS  Google Scholar 

  27. Ding Y, Zhu L, Wang N, Tang H (2013) Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Appl Catal B 129:153. https://doi.org/10.1016/j.apcatb.2012.09.015

    Article  CAS  Google Scholar 

  28. Kohantorabi M, Moussavi G, Mohammadi S, Oulego P, Giannakis S (2021) Photocatalytic activation of peroxymonosulfate (PMS) by novel mesoporous Ag/ZnO@NiFe2O4 nanorods, inducing radical-mediated acetaminophen degradation under UVA irradiation. Chemosphere 277:130271. https://doi.org/10.1016/j.chemosphere.2021.130271

    Article  CAS  Google Scholar 

  29. Xian G, Kong S, Li Q et al (2020) Synthesis of spinel Ferrite MFe2O4 (M = Co, Cu, Mn, and Zn) for persulfate activation to remove aqueous organics: effects of M-site metal and synthetic method. Front Chem. https://doi.org/10.3389/fchem.2020.00177

    Article  Google Scholar 

  30. Zhong W, Peng Q, Liu K, Zhang Y, Xing J (2023) Al3+ doped CuFe2O4 efficiently activates peroxymonosulfate for long-term and stable degradation of tetracycline: synergistic and regulatory role of Al3+. Sep Purif Technol 310:123204. https://doi.org/10.1016/j.seppur.2023.123204

    Article  CAS  Google Scholar 

  31. Zhong Y, Shih K, Diao Z et al (2021) Peroxymonosulfate activation through LED-induced ZnFe2O4 for levofloxacin degradation. Chem Eng J 417:129225. https://doi.org/10.1016/j.cej.2021.129225

    Article  CAS  Google Scholar 

  32. Chen J, Rasool RT, Ashraf GA, Guo H (2023) The stimulation of peroxymonosulfate via novel Co0.5Cu0.5Fe2O4 heterogeneous photocatalyst in aqueous solution for organic contaminants removal. Mater Sci Semicond Process 157:107321. https://doi.org/10.1016/j.mssp.2023.107321

    Article  CAS  Google Scholar 

  33. Dhiman P, Rana G, Kumar A et al (2021) Nanostructured magnetic inverse spinel Ni–Zn ferrite as environmental friendly visible light driven photo-degradation of levofloxacin. Chem Eng Res Des 175:85. https://doi.org/10.1016/j.cherd.2021.08.028

    Article  CAS  Google Scholar 

  34. Sundararajan M, Kennedy LJ, Aruldoss U, Pasha SK, Vijaya JJ, Dunn S (2015) Microwave combustion synthesis of zinc substituted nanocrystalline spinel cobalt ferrite: structural and magnetic studies. Mater Sci Semicond Process 40:1–10. https://doi.org/10.1016/j.mssp.2015.06.002

    Article  CAS  Google Scholar 

  35. Thejas R, Soundarya TL, Nagaraju G et al (2022) Effect of cation concentration on structural, morphology, optical properties of zinc–nickel ferrite nanoparticles. Mater Lett X 15:100156. https://doi.org/10.1016/j.mlblux.2022.100156

    Article  CAS  Google Scholar 

  36. Sundararajan M, Sailaja V, John Kennedy L, Judith Vijaya J (2017) Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism. Ceram Int 43(1):540–548. https://doi.org/10.1016/j.ceramint.2016.09.191

    Article  CAS  Google Scholar 

  37. Mote VD, Purushotham Y, Dole BN (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:6

    Article  Google Scholar 

  38. Dhiman P, Mehta T, Kumar A et al (2020) Mg0.5NixZn0.5-xFe2O4 spinel as a sustainable magnetic nano-photocatalyst with dopant driven band shifting and reduced recombination for visible and solar degradation of Reactive Blue-19. Adv Powder Technol 31:4585

    Article  CAS  Google Scholar 

  39. Bertaut F (1950) Etude de la nature des ferrites spinelles. Comptes Rendus Hebd Seances L Acad Sci 230:213

    CAS  Google Scholar 

  40. Andhare DD, Patade SR, Kounsalye JS, Jadhav KM (2020) Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Phys B Condens Matter 583:412051. https://doi.org/10.1016/j.physb.2020.412051

    Article  CAS  Google Scholar 

  41. Chatterjee P, Chakraborty AK (2021) Band-gap engineering of tungsten oxide nanoplates by cobalt ferrite co-catalyst for solar water oxidation. Opt Mater 111:110610. https://doi.org/10.1016/j.optmat.2020.110610

    Article  CAS  Google Scholar 

  42. El Foulani AH, Aamouche A, Mohseni F, Amaral JS, Tobaldi DM, Pullar RC (2019) Effect of surfactants on the optical and magnetic properties of cobalt-zinc ferrite Co0.5Zn0.5Fe2O4. J Alloy Compd 774:1250. https://doi.org/10.1016/j.jallcom.2018.09.393

    Article  CAS  Google Scholar 

  43. Sun H, Qin P, Wu Z et al (2020) Visible light-driven photocatalytic degradation of organic pollutants by a novel Ag3VO4/Ag2CO3 p–n heterojunction photocatalyst: mechanistic insight and degradation pathways. J Alloys Compd 834:155211. https://doi.org/10.1016/j.jallcom.2020.155211

    Article  CAS  Google Scholar 

  44. Karuppusamy I, Shanmugam S, Brindhadevi K et al (2022) Investigation of photocatalytic performance of titania based hybrid nanocomposite structure for dilapidation of organic contaminants. Food Chem Toxicol 168:113335. https://doi.org/10.1016/j.fct.2022.113335

    Article  CAS  Google Scholar 

  45. Lu Y, Yousaf M, Akhtar MN et al (2022) Effect of Gd and Co contents on the microstructural, magneto-optical and electrical characteristics of cobalt ferrite (CoFe2O4) nanoparticles. Ceram Int 48:2782. https://doi.org/10.1016/j.ceramint.2021.10.067

    Article  CAS  Google Scholar 

  46. Wu Y, Xu L, Shi J et al (2022) Cobalt ferrite/cellulose membrane inserted catalytic syringe filter for facile in-situ filtration/degradation of emerging organic pollutants in water via activating peroxymonosulfate. Mater Des 220:110817. https://doi.org/10.1016/j.matdes.2022.110817

    Article  CAS  Google Scholar 

  47. Shanmugam S, Krishnaswamy S, Chandrababu R, Veerabagu U, Pugazhendhi A, Mathimani T (2020) Optimal immobilization of Trichoderma asperellum laccase on polymer coated Fe3O4@SiO2 nanoparticles for enhanced biohydrogen production from delignified lignocellulosic biomass. Fuel 273:117777. https://doi.org/10.1016/j.fuel.2020.117777

    Article  CAS  Google Scholar 

  48. Dimri MC, Verma A, Kashyap SC, Dube D, Thakur O, Prakash C (2006) Structural, dielectric and magnetic properties of NiCuZn ferrite grown by citrate precursor method. Mater Sci Eng B 133:42–48

    Article  CAS  Google Scholar 

  49. Andhare DD, Patade SR, Kounsalye JS, Jadhav K (2020) Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Physica B 583:412051

    Article  CAS  Google Scholar 

  50. Patange S, Shirsath SE, Jangam G, Lohar K, Jadhav SS, Jadhav K (2011) Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles. J Appl Phys 109:053909

    Article  Google Scholar 

  51. Phong PT, Nam PH, Phuc NX et al (2019) Effect of zinc concentration on the structural, optical, and magnetic properties of mixed Co–Zn Ferrites nanoparticles synthesized by low-temperature hydrothermal method. Metall and Mater Trans A 50:1571. https://doi.org/10.1007/s11661-018-5096-z

    Article  CAS  Google Scholar 

  52. Sundararajan M, Kennedy LJ, Vijaya JJ, Aruldoss U (2015) Microwave combustion synthesis of Co1−xZnxFe2O4 (0 ≤ x ≤ 0.5): structural, magnetic, optical and vibrational spectroscopic studies. Spectrochim Acta Part A Mol Biomol Spectrosc 140:421–430

    Article  CAS  Google Scholar 

  53. Hadi M, Batoo KM, Chauhan A, Aldossary OM, Verma R, Yang Y (2021) Tuning of structural, dielectric, and electronic properties of Cu doped Co–Zn Ferrite nanoparticles for multilayer inductor chip applications. Magnetochemistry 7:53

    Article  CAS  Google Scholar 

  54. Tedjieukeng HMK, Tsobnang PK, Fomekong RL et al (2018) Structural characterization and magnetic properties of undoped and copper-doped cobalt ferrite nanoparticles prepared by the octanoate coprecipitation route at very low dopant concentrations. RSC Adv 8:38621–38630

    Article  Google Scholar 

  55. Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903

    Article  CAS  Google Scholar 

  56. Tuan DD, Hu C, Kwon E, Du Y, Lin K-YA (2020) Coordination polymer-derived porous Co3O4 nanosheet as an effective catalyst for activating peroxymonosulfate to degrade sulfosalicylic acid. Appl Surf Sci 532:147382

    Article  CAS  Google Scholar 

  57. Li M-C, Ghanbari F, Chang F-C, Hu C, Lin K-YA, Du Y (2020) Enhanced degradation of 5-sulfosalicylic acid using peroxymonosulfate activated by ordered porous silica-confined Co3O4 prepared via a solvent-free confined space strategy. Sep Purif Technol 249:116972

    Article  CAS  Google Scholar 

  58. Yu X, Wu X, Guo F, Liu J, Zhao Q (2023) Visible-light-assisted activation of peroxymonosulfate (PMS) over CoOx@ C/g-C3N4 composite for efficient organic pollutant degradation. J Alloys Compd 948:169702. https://doi.org/10.1016/j.jallcom.2023.169702

    Article  CAS  Google Scholar 

  59. Shi H, Long S, Shen H et al (2019) Interfacial charge transfer in 0D/2D defect-rich heterostructures for efficient solar-driven CO2 reduction. Appl Catal B Environ 245:760–769. https://doi.org/10.1016/j.apcatb.2019.01.036

    Article  CAS  Google Scholar 

  60. Kohantorabi M, Moussavi G, Oulego P, Giannakis S (2021) Radical-based degradation of sulfamethoxazole via UVA/PMS-assisted photocatalysis, driven by magnetically separable Fe3O4@ CeO2@ BiOI nanospheres. Sep Purif Technol 267:118665. https://doi.org/10.1016/j.seppur.2021.118665

    Article  CAS  Google Scholar 

  61. Tan Y, Li C, Sun Z et al (2020) Natural diatomite mediated spherically monodispersed CoFe2O4 nanoparticles for efficient catalytic oxidation of bisphenol A through activating peroxymonosulfate. Chem Eng J 388:124386. https://doi.org/10.1016/j.cej.2020.124386

    Article  CAS  Google Scholar 

  62. He Y, Qian J, Wang P et al (2022) Modulating cobalt–iron electron transfer via encapsulated structure for enhanced catalytic activity in photo-peroxymonosulfate coupling system. J Hazard Mater 439:129609. https://doi.org/10.1016/j.jhazmat.2022.129609

    Article  CAS  Google Scholar 

  63. Kakavandi B, Alavi S, Ghanbari F, Ahmadi M (2022) Bisphenol A degradation by peroxymonosulfate photo-activation coupled with carbon-based cobalt ferrite nanocomposite: performance, upgrading synergy and mechanistic pathway. Chemosphere 287:132024. https://doi.org/10.1016/j.chemosphere.2021.132024

    Article  CAS  Google Scholar 

  64. Shi L, He Y, Wang X, Yanwei H (2018) Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanoparticles. Energy Convers Manag 171:272–278. https://doi.org/10.1016/j.enconman.2018.05.106

    Article  CAS  Google Scholar 

  65. Shi B, Wang Y, Ahmed I, Zhang B (2022) Catalytic degradation of refractory phenol sulfonic acid by facile, calcination-free cobalt ferrite nanoparticles. J Environ Chem Eng 10:107616. https://doi.org/10.1016/j.jece.2022.107616

    Article  CAS  Google Scholar 

  66. Shen Yu, María J, de Vidales M, Espíndola JC, Gómez-Herrero A, Dos santos-García AJ (2021) Paracetamol degradation by photo-assisted activation of peroxymonosulfate over ZnxNi1−xFe2O4@BiOBr heterojunctions. J Environ Chem Eng 9(6):106797. https://doi.org/10.1016/j.jece.2021.106797

    Article  CAS  Google Scholar 

  67. You Y, Shi Z, Li Y, Zhao Z, He B, Cheng X (2021) Magnetic cobalt ferrite biochar composite as peroxymonosulfate activator for removal of lomefloxacin hydrochloride. Sep Purif Technol 272:118889. https://doi.org/10.1016/j.seppur.2021.118889

    Article  CAS  Google Scholar 

  68. Balakrishnan RM, Ilango I, Gamana G, Bui X-T, Pugazhendhi A (2021) Cobalt ferrite nanoparticles and peroxymonosulfate system for the removal of ampicillin from aqueous solution. J Water Process Eng 40:101823. https://doi.org/10.1016/j.jwpe.2020.101823

    Article  Google Scholar 

  69. Xiao S, Zhou J, Liu D et al (2022) Efficient degradation of tetracycline hydrochloride by peroxymonosulfate activated by composite materials FeSe2/Fe3O4 under visible light. Chem Phys Lett 805:139944. https://doi.org/10.1016/j.cplett.2022.139944

    Article  CAS  Google Scholar 

  70. Zhang Y, Cheng Y, Qi H (2022) Synergistic degradation of organic pollutants on CoFe2O4/rGO nanocomposites by peroxymonosulfate activation under LED irradiation. Appl Surf Sci 579:152151. https://doi.org/10.1016/j.apsusc.2021.152151

    Article  CAS  Google Scholar 

  71. Al-Anazi A, Abdelraheem WH, Han C et al (2018) Cobalt ferrite nanoparticles with controlled composition-peroxymonosulfate mediated degradation of 2-phenylbenzimidazole-5-sulfonic acid. Appl Catal B 221:266. https://doi.org/10.1016/j.apcatb.2017.08.054

    Article  CAS  Google Scholar 

  72. Zhang X, Liu W, Zhou Y et al (2022) Photo-assisted bismuth ferrite/manganese dioxide/nickel foam composites activating PMS for degradation of enrofloxacin in water. Sep Purif Technol 301:121988. https://doi.org/10.1016/j.seppur.2022.121988

    Article  CAS  Google Scholar 

  73. Golshan M, Kakavandi B, Ahmadi M, Azizi M (2018) Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2,4-D degradation: process feasibility, mechanism and pathway. J Hazard Mater 359:325. https://doi.org/10.1016/j.jhazmat.2018.06.069

    Article  CAS  Google Scholar 

  74. Sun Q, Wang X, Liu Y, Zhang Y, Xia S, Zhao J (2023) Visible-light-driven g-C3N4 doped CuFe2O4 floating catalyst enhanced peroxymonosulfate activation for sulfamethazine removal via singlet oxygen and high-valent metal-oxo species. Chem Eng J 455:140198. https://doi.org/10.1016/j.cej.2022.140198

    Article  CAS  Google Scholar 

  75. Tuna Ö, Simsek EB (2023) Enhanced visible-light-assisted peroxymonosulfate activation of low-cost perovskite CaFe2O4 for tartrazine degradation: experimental design modelling. Mater Res Bull 159:112090. https://doi.org/10.1016/j.materresbull.2022.112090

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

PD conceptualized the work; GR performed formal analysis and experimental data collection; GS and AK contributed to draft.

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 808 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, P., Kumar, A., Rana, G. et al. Cobalt–zinc nanoferrite for synergistic photocatalytic and peroxymonosulfate-assisted degradation of sulfosalicylic acid. J Mater Sci 58, 9938–9966 (2023). https://doi.org/10.1007/s10853-023-08669-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08669-z

Navigation