Skip to main content
Log in

Synthesis and Methane Gas Sensing Study of Uniform Zinc Oxide Nanoparticles and Thin Film

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, zinc oxide (ZnO) nanoparticles and their thin film were synthesized using co-precipitation and spin coating techniques, respectively. Spherical nanoparticles measuring 10–120 nm and thin film having particle with a diameter of 10–100 nm were synthesized. The electrical properties of the synthesized nanoparticles were evaluated using the KEITHLEY semiconductor characterization system. The structure, phase identification, and morphology of the nanoparticles investigated by X-ray diffraction, Raman, and scanning electron microscope techniques were employed. The results confirmed that the ZnO nanoparticles had a hexagonal wurtzite structure. Additionally, gas sensing measurements were conducted using a locally made sensing chamber. The response of nanoparticles and their thin film were observed at varying concentrations of methane gas in the chamber. Response of the thin film as sensor is greater, fast and consistent as compared to nanoparticles sensor. Our study reveals best sensor having response (Ra/Rg) of 1.37 for 100 ppm of CH4 at 140 °C as compared to previous reported studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hessien, M.: Recent progress in zinc oxide nanomaterials and nanocomposites: from synthesis to applications. Ceram. Int. 48, 22609–22628 (2022). https://doi.org/10.1016/j.ceramint.2022.05.082

    Article  Google Scholar 

  2. Iqbal, M.; Ibrar, A.; Ali, A.; Memon, F.H.; Rehman, F.; Bhatti, Z.; Soomro, F.; Ali, A.; Thebo, K.H.: Facile synthesis of zinc oxide nanostructures and their antibacterial and antioxidant properties. Int. Nano Lett. 12(2), 205–213 (2022). https://doi.org/10.1007/s40089-022-00370-4

    Article  Google Scholar 

  3. Waghchaure, R.H.; Adole, V.A.; Jagdale, B.S.; Koli, P.B.: Fe3+ modified zinc oxide nanomaterial as an efficient, multifaceted material for photocatalytic degradation of MB dye and ethanol gas sensor as part of environmental rectification. Inorg. Chem. Commun. 140, 109450 (2022). https://doi.org/10.1016/j.inoche.2022.109450

    Article  Google Scholar 

  4. Jin, M.; Li, N.; Sheng, W.; Ji, X.; Liang, X.; Kong, B.; Yin, P.; Li, Y.; Zhang, X.; Liu, K.: Toxicity of different zinc oxide nanomaterials and dose-dependent onset and development of Parkinson’s disease-like symptoms induced by zinc oxide nanorods. Environ. Int. 146, 106179 (2021). https://doi.org/10.1016/j.envint.2020.106179

    Article  Google Scholar 

  5. Iqbal, M.; Thebo, A.A.; Jatoi, W.B.; Tabassum, M.T.; Rehman, M.U.; Thebo, K.H.; Mohsin, M.A.; Ullah, S.; Jatoi, A.H.; Shah, I.: Facile synthesis of Cr doped hierarchical ZnO nano-structures for enhanced photovoltaic performance. Inorg. Chem. Commun. 116, 107902 (2020). https://doi.org/10.1016/j.inoche.2020.107902

    Article  Google Scholar 

  6. Hussain, S.; Li, Y.; Mustehsin, A.; Ali, A.; Thebo, K.H.; Ali, Z.; Hussain, S.: Synthesis and characterization of ZnO/samarium-doped ceria nanocomposites for solid oxide fuel cell applications. Ionics 27(11), 4849–4857 (2021). https://doi.org/10.1007/s11581-021-04246-z

    Article  Google Scholar 

  7. Rauf, M.A.; Oves, M.; Rehman, F.U.; Khan, A.R.; Husain, N.: Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomed. Pharmacother. 116, 108983 (2019). https://doi.org/10.1016/j.biopha.2019.108983

    Article  Google Scholar 

  8. Jeon, I.S.; Bae, G.; Jang, M.; Song, W.; Myung, S.; Lee, S.S.; Jung, H.K.; Hwang, J.; An, K.S.: A synergistic combination of zinc oxide nanowires array with dual-functional zeolitic imidazolate framework-8 for hybrid nanomaterials-based gas sensors. Compos. B Eng. 180, 107552 (2020). https://doi.org/10.1016/j.compositesb.2019.107552

    Article  Google Scholar 

  9. Khan, J.; Ullah, H.; Sajjad, M.; Bahadar, A.; Bhatti, Z.; Soomro, F.; Memon, F.H.; Iqbal, M.; Rehman, F.; Thebo, K.H.: High yield synthesis of transition metal fluorides (CoF2, NiF2, and NH4MnF3) nanoparticles with excellent electrochemical performance. Inorg. Chem. Commun. 130, 108751 (2021). https://doi.org/10.1016/j.inoche.2021.108751

    Article  Google Scholar 

  10. Khan, J.; Ullah, H.; Sajjad, M.; Ali, A.; Thebo, K.H.: characterization and electrochemical performance of cobalt fluoride nanoparticles by reverse micro-emulsion method. Inorg. Chem. Commun. 98, 132–140 (2018). https://doi.org/10.1016/j.inoche.2018.10.018

    Article  Google Scholar 

  11. Iqbal, M.; Ali, A.; Ahmad, K.S.; Rana, F.M.; Khan, J.; Khan, K.; Thebo, K.H.: Synthesis and characterization of transition metals doped CuO nanostructure and their application in hybrid bulk heterojunction solar cells. SN Appl. Sci. 1, 1–8 (2019). https://doi.org/10.1007/s42452-019-0663-5

    Article  Google Scholar 

  12. Li, Q.; Cen, Y.; Huang, J.; Li, X.; Zhang, H.; Geng, Y.; Yakobson, B.I.; Du, Y.; Tian, X.: Zinc oxide–black phosphorus composites for ultrasensitive nitrogen dioxide sensing. Nanoscale Horiz. 3(5), 525–531 (2018). https://doi.org/10.1039/C8NH00052B

    Article  Google Scholar 

  13. Drmosh, Q.A.; Olanrewaju Alade, I.; Qamar, M.; Akbar, S.: Zinc oxide-based acetone gas sensors for breath analysis: a review. Chem. Asian J. 16(12), 1519–1538 (2021). https://doi.org/10.1002/asia.202100303

    Article  Google Scholar 

  14. Zhou, H.; Xu, K.; Yang, Y.; Yu, T.; Yuan, C.; Wei, W.; Sun, Y.; Lu, W.: One-Dimensional zinc oxide decorated cobalt oxide nanospheres for enhanced gas-sensing properties. Front. Chem. 6, 628 (2018). https://doi.org/10.3389/fchem.2018.00628

    Article  Google Scholar 

  15. Bhattacharyya, P.; Basu, P.K.; Lang, C.; Saha, H.; Basu, S.: Noble metal catalytic contacts to sol–gel nanocrystalline zinc oxide thin films for sensing methane. Sens. Actuators B Chem. 129(2), 551–557 (2008). https://doi.org/10.1016/j.snb.2007.09.001

    Article  Google Scholar 

  16. La, H.; Hettiaratchi, J.P.A.; Achari, G.; Dunfield, P.F.: Biofiltration of methane. Biores. Technol. 268, 759–772 (2018). https://doi.org/10.1016/j.biortech.2018.07.043

    Article  Google Scholar 

  17. Bezdek, M.J.; Luo, S.X.L.; Ku, K.H.; Swager, T.M.: A chemiresistive methane sensor. Proc. Natl. Acad. Sci. 118(2), 2022515118 (2021). https://doi.org/10.1073/pnas.2022515118

    Article  Google Scholar 

  18. Dobrzyniewski, D.; Szulczyński, B.; Dymerski, T.; Gębicki, J.: Development of gas sensor array for methane reforming process monitoring. Sensors 21(15), 4983 (2021). https://doi.org/10.3390/s21154983

    Article  Google Scholar 

  19. Wu, R.; Tian, L.; Li, H.; Liu, H.; Luo, J.; Tian, X.; Hua, Z.; Wu, Y.; Fan, S.: A selective methane gas sensor based on metal oxide semiconductor equipped with an on-chip microfilter. Sens. Actuators B Chem. 359, 131557 (2022). https://doi.org/10.1016/j.snb.2022.131557

    Article  Google Scholar 

  20. Lu, N.; Fan, S.; Zhao, Y.; Yang, B.; Hua, Z.; Wu, Y.: A selective methane gas sensor with printed catalytic films as active filters. Sens. Actuators B Chem. 347, 130603 (2021). https://doi.org/10.1016/j.snb.2021.130603

    Article  Google Scholar 

  21. Cao, R.; Ding, H.; Kim, K.J.; Peng, Z.; Wu, J.; Culp, J.T.; Ohodnicki, P.R.; Beckman, E.; Chen, K.P.: Metal-organic framework functionalized polymer coating for fiber optical methane sensors. Sens. Actuators B Chem. 324, 128627 (2020). https://doi.org/10.1016/j.snb.2020.128627

    Article  Google Scholar 

  22. Al-She’irey, A.Y.; Balouch, A.; Mawarnis, E.R.; Roza, L.; Rahman, M.Y.A.; Mahar, A.M.: Effect of ZnO seed layer annealing temperature on the growth of ZnO nanorods and its catalytic application. Opt. Mater. 131, 112652 (2022). https://doi.org/10.1016/j.optmat.2022.112652

    Article  Google Scholar 

  23. Zhang, L.; Yin, W.; Shen, S.; Feng, Y.; Xu, W.; Sun, Y.; Yang, Z.: ZnO nanoparticles interfere with top-down effect of the protozoan paramecium on removing microcystis. Environ. Pollut. 310, 119900 (2022). https://doi.org/10.1016/j.envpol.2022.119900

    Article  Google Scholar 

  24. Wang, X.; Zhou, Y.; Feng, F.; Guo, Y.; Hao, Z.; Lu, C.; Li, X.: Synthesis of high photoreactive flower-like ZnO nanoneedles assembly with exposed nonpolar 1010 facets oriented by carbon spheres. Appl. Surf. Sci. 598, 153799 (2022). https://doi.org/10.1016/j.apsusc.2022.153799

    Article  Google Scholar 

  25. Liu, X.; Cao, J.; Yang, L.; Wei, M.; Li, X.; Lang, J.; Li, X.; Liu, Y.; Yang, J.; Liu, Y.: Growth mechanism, optical and photocatalytic properties of ZnO nanorods@ nanoflowers (quantum dots) hybrid nanostructures. Ceram. Int. 41(9), 12258–12266 (2015). https://doi.org/10.1016/j.jallcom.2012.12.074

    Article  Google Scholar 

  26. Shawky, A.; Alshaikh, H.: Cobalt ferrite-modified sol-gel synthesized ZnO nanoplatelets for fast and bearable visible light remediation of ciprofloxacin in water. Environ. Res. 205, 112462 (2022). https://doi.org/10.1016/j.envres.2021.112462

    Article  Google Scholar 

  27. Mohammadzadeh, A.; Azadbeh, M.; Shokriyan, B.; Abad, S.N.K.: Synthesis of ZnO nanocombs and tetrapods by catalyst-free oxidation of alpha brass powders in air atmosphere. Ceram. Int. 46(2), 2552–2557 (2020). https://doi.org/10.1016/j.ceramint.2019.09.112

    Article  Google Scholar 

  28. Nakate, U.T.; Yu, Y.T.; Park, S.: Hydrothermal synthesis of ZnO nanoflakes composed of fine nanoparticles for H2S gas sensing application. Ceram. Int. 48(19), 28822–28829 (2022). https://doi.org/10.1016/j.ceramint.2022.03.017

    Article  Google Scholar 

  29. Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y.: Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics 360, 115544 (2021). https://doi.org/10.1016/j.ssi.2020.115544

    Article  Google Scholar 

  30. Patil, N.B.; Nimbalkar, A.R.; Patil, M.G.: ZnO thin film prepared by a sol-gel spin coating technique for NO2 detection. Mater. Sci. Eng. B 227, 53–60 (2018). https://doi.org/10.1016/j.mseb.2017.10.011

    Article  Google Scholar 

  31. Shaikh, F.I.; Chikhale, L.P.; Mulla, I.S.; Suryavanshi, S.S.: Facile Co-precipitation synthesis and ethanol sensing performance of Pd loaded Sr doped SnO2 nanoparticles. Powder Technol. 326, 479–487 (2018). https://doi.org/10.1016/j.powtec.2017.12.028

    Article  Google Scholar 

  32. Horzum, N.; Hilal, M.E.; Isık, T.: Enhanced bactericidal and photocatalytic activities of ZnO nanostructures by changing the cooling route. New J. Chem. 42(14), 11831–11838 (2018). https://doi.org/10.1039/C8NJ01849A

    Article  Google Scholar 

  33. Yamazoe, N.; Kurokawa, Y.; Seiyama, T.: Effects of additives on semiconductor gas sensors. Sens. Actuators 4, 283–289 (1983). https://doi.org/10.1016/0250-6874(83)85034-3

    Article  Google Scholar 

  34. Zhang, S.; Li, Y.; Sun, G.; Zhang, B.; Wang, Y.; Cao, J.; Zhang, Z.: Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance. Appl. Surf. Sci. 497, 143811 (2019). https://doi.org/10.1016/j.apsusc.2019.143811

    Article  Google Scholar 

  35. Li, X.; Li, Y.; Sun, G.; Luo, N.; Zhang, B.; Zhang, Z.: Synthesis of a flower-like g-C3N4/ZnO hierarchical structure with improved CH4 sensing properties. Nanomaterials 9(5), 724 (2019). https://doi.org/10.3390/nano9050724

    Article  Google Scholar 

  36. Zhang, D.; Yin, N.; Xia, B.: Facile fabrication of ZnO nanocrystalline-modified graphene hybrid nanocomposite toward methane gas sensing application. J. Mater. Sci. Mater. Electron. 26, 5937–5945 (2015). https://doi.org/10.1007/s10854-015-3165-2

    Article  Google Scholar 

  37. Yang, Y.; Wang, X.; Yi, G.; Li, H.; Shi, C.; Sun, G.; Zhang, Z.: Hydrothermally synthesized porous ZnO nanosheets for methane sensing at lower temperature. J. Porous Mater. 27, 1363–1368 (2020). https://doi.org/10.1007/s10934-020-00911-2

    Article  Google Scholar 

  38. Hu, J.; Gao, F.; Zhao, Z.; Sang, S.; Li, P.; Zhang, W.; Zhou, X.; Chen, Y.: Synthesis and characterization of Cobalt-doped ZnO microstructures for methane gas sensing. Appl. Surf. Sci. 363, 181–188 (2016). https://doi.org/10.1016/j.apsusc.2015.12.024

    Article  Google Scholar 

  39. Aghagoli, Z.; Ardyanian, M.: Synthesis and study of the structure, magnetic, optical and methane gas sensing properties of cobalt doped zinc oxide microstructures. J. Mater. Sci. Mater. Electron. 29, 7130–7141 (2018). https://doi.org/10.1007/s10854-018-8701-4

    Article  Google Scholar 

  40. Lupan, O.; Postica, V.; Gröttrup, J.; Mishra, A.K.; De Leeuw, N.H.; Carreira, J.F.; Rodrigues, J.; Ben Sedrine, N.; Correia, M.R.; Monteiro, T.; Cretu, V.: Hybridization of zinc oxide tetrapods for selective gas sensing applications. ACS Appl. Mater. Interfaces 9(4), 4084–4099 (2017). https://doi.org/10.1021/acsami.6b11337

    Article  Google Scholar 

Download references

Acknowledgements

Author acknowledged the support of Department of Physics University of Wah, Wah cantt, Pakistan, and King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

Funding

This study was supported by KFUPM (KACO2512).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sami Ullah or Rizwan Ullah.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest for this research work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoaib, M., Ghazanfar, U., Ullah, S. et al. Synthesis and Methane Gas Sensing Study of Uniform Zinc Oxide Nanoparticles and Thin Film. Arab J Sci Eng (2023). https://doi.org/10.1007/s13369-023-08527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08527-9

Keywords

Navigation