Skip to main content
Log in

Facile synthesis of zinc oxide nanostructures and their antibacterial and antioxidant properties

  • Short communication
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Metal-oxide-based nanostructure has got a significant interest for anticorrosion, antioxidant, and antibacterial applications. Herein, ZnO nanoparticles (NPs) and nanoneedles (NNs) are prepared by hydrothermal synthesis and used for antibacterial and antioxidant properties. The scanning electron microscopy (SEM), transmission electron microcopy (TEM), X-ray diffraction (XRD) and UV–visible Spectroscopy are used to characterize the ZnO-based nanostructures. The ZnO NNs exhibit excellent antibacterial properties against a strain of Gram-positive and Gram-negative bacterium of (18 and 16 nm) zone of inhibition (ZOI) compared to ZnO NPs (10 and 12 mm ZOI), respectively. Moreover, their scavenging against 2,2-diphenyl-1-picryhydrazyl free radical is investigated. The ZnO NNs show the highest antioxidant activity (~ 94%) compared to ZnO NP (~ 46%). We believe this study is aims to be significant in various bio-medical industries regarding new structures development as well as antibacterial and antioxidant studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

References

  1. Desselberger, U.: Emerging and re-emerging infectious diseases. J. Infect. 40(1), 3–15 (2000)

    Article  CAS  Google Scholar 

  2. Jones, N., Ray, B., Ranjit, K.T., Manna, A.C.: Antibacterial activity of ZnO nanoparticle suspensions on a board spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008)

    Article  CAS  Google Scholar 

  3. Hajipour, M.J., Fromm, K.M., Ashkarran, A.A., de Aberasturi, D.J., de Larramendi, I.R., Rojo, T., Serpooshan, V., Parak, W.J., M.: Mahmoudi antibacterial properties of nanoparticles. Trends Biotechnol 30(10), 499–511 (2012)

    Article  CAS  Google Scholar 

  4. Iqbal, M., Ibrar, A., Ali, A., Rehman, F., Jatoi, A.H., Jatoi, W.B., Phulpoto, S., Thebo, K.H.: Facile synthesis of Zn-doped CdS nanowires with efficient photocatalyt. Environ. Technol. (2002). https://doi.org/10.1080/09593330.2020.1850880

    Article  Google Scholar 

  5. Nahyoon, N.A., Liu, L., Rabe, K., Thebo, K.H., Yuan, L., Sun, J., Yang, F.: Significant photocatalytic degradation and electricity generation in the photocatalytic fuel cell (PFC) using novel anodic nanocomposite of Fe, graphene oxide, and titanium phosphate. Electrochim. Acta 271, 41–48 (2018)

    Article  CAS  Google Scholar 

  6. Iqbal, M., Ali, A., Nahyoon, N.A., Majeed, A., Pothu, R., Phulpoto, S., Thebo, K.H.: Photocatalytic degradation of organic pollutant with nanosized cadmium sulfide. Mater. Sci. Energy Technol. 2, 41–45 (2019)

    Google Scholar 

  7. Iqbal, M., Thebo, A.A., Jatoi, W.B., Tabassum, M.T., Thebo, K.H., Mohsin, M.A., Jatoi, A.H., Shah, I.: Facile synthesis of Cr doped hierarchical ZnO nano-structures for enhanced photovoltaic performance. Inorg. Chem. Commun. 116, 10790 (2020)

    Article  Google Scholar 

  8. Khan, J., Ullah, H., Sajjad, M., Ali, A., Thebo, K.H.: Synthesis, characterization and electrochemical performance of cobalt fluoride nanoparticles by reverse micro-emulsion method. Inorg. Chem. Commun. 98, 132–140 (2018)

    Article  CAS  Google Scholar 

  9. Iqbal, M., Thebo, A.A., Ahmed, K.S., Rana, F.M., Khan, J., Khan, K., Thebo, K.H.: Synthesis and characterization of transition metals doped CuO nanostructure and their application in hybrid bulk heterojunction solar cells. SN Sci. 1, 647 (2019)

    CAS  Google Scholar 

  10. Khan, J., Ullah, H., Sajjad, M., Jatoi, W.B., Ali, A., Khan, K., Thebo, K.H.: Controlled synthesis of ammonium manganese tri-fluoride nanoparticles with enhanced electrochemical performance. Mater. Res. Express 6(7), 07507 (2019)

    Google Scholar 

  11. Iqbal, M., Thebo, A.A., Shah, A.H., Iqbal, A., Thebo, K.H., Phulpoto, S., Mohsin, M.A.: Influence of transition metal doping on the photocatalytic activity and solar cell efficiency of CuO nanowires. Inorg. Chem. Commun. 76, 71–76 (2017)

    Article  CAS  Google Scholar 

  12. Dey, P.C., Ingti, B., Bhattacharjee, A., Choudhury, M.D., Das, R., Nath, S.S.: Enhancement of antibacterial activity of synthesized ligand-free CdS nanocrystals due to silver doping. J Basic Microbiol. 61(1), 27–36 (2021)

    Article  CAS  Google Scholar 

  13. Dey, P.C., Nath, P., Maiti, D., Das, R.: Antibacterial activity of MPA-capped CdTe and Ag-doped CdTe nanocrystals: showing different activity against gram-positive and gram-negative bacteria. Chem. Pap. 74, 3409–3421 (2020)

    Article  CAS  Google Scholar 

  14. Willner, M.R., Vikesland, P.J.: Nanomaterial enabled sensors for environmental contaminants. J. Nanobiotechnol. 16(95), 1–16 (2018)

    Google Scholar 

  15. Sanvicens, N., Pastells, C., Pascual, N., Marco, M.-P.: Nanoparticle-based biosensor for detection of pathogenic bacteria. Trends Anal. Chem. 28(11), 1243–1252 (2009)

    Article  CAS  Google Scholar 

  16. Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z.Q., Lin, M.: Antibacterial activities of zinc oxide nanoparticles against echerichia coli O157:H7. J. Appl. Microbiol. 107, 1193–1201 (2009)

    Article  CAS  Google Scholar 

  17. Padmavathy, N., Vijayaraghavan, R.: Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008)

    Article  Google Scholar 

  18. Siddiqi, K.S., Rahman, A., Husen, A.: Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 13, 141–153 (2018)

    Article  Google Scholar 

  19. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F., Fiévet, F.: Toxicology impact studies based on escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano. Lett. 6(4), 866–870 (2006)

    Article  CAS  Google Scholar 

  20. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., Mohamad, D.: Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro. Lett. 7, 219–242 (2015)

    Article  CAS  Google Scholar 

  21. Das, D., Nath, B.C., Phukon, P., Kalita, A., Dolui, S.K.: Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Coll. Surf. B Biointerf. 111, 556–560 (2013)

    Article  CAS  Google Scholar 

  22. Zhang, Z.Y., Xiong, H.M.: Photoluminescent ZnO nanoparticles and their biological applications. Materials 8(6), 3101–3127 (2015)

    Article  CAS  Google Scholar 

  23. Shi, L.E., Li, Z.H., Zheng, W., Zhao, Y.F., Jin, Y.F., Tang, Z.X.: Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit. Contam. Part A 31(2), 173–186 (2014)

    Article  CAS  Google Scholar 

  24. Jiang, Y., Zhang, L., Wen, D., Ding, Y.: Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli. Mater. Sci. Eng. C 69, 1361–1366 (2016)

    Article  CAS  Google Scholar 

  25. Dutta, R.K., Nenavathu, B.P., Gangishetty, M.K., Reddy, A.V.: Antibacterial effect of chronic exposure of low concentration ZnO nanoparticles on E. coli. J. Environ. Sci. Health Part A 48(8), 871–878 (2013)

    Article  CAS  Google Scholar 

  26. Alwan, R.M., Kadhim, Q.A., Sahan, K.M., Ali, R.A., Mahdi, R.J., Kassim, N.A., Jassim, A.N.: Synthesis of Zinc Oxide Nanoparticles via Sol-Gel Route and Their Characterization. Nanosci. Nanotechnol. 5(1), 1–6 (2015)

    Google Scholar 

  27. Darezereshki, E., Alizadeh, M., Bakhtiari, F., Schaffie, M., Ranjbard, M.: A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions. Appl. Clay Sci. 54, 107–111 (2011)

    Article  CAS  Google Scholar 

  28. Raoufi, D.: Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew. Energy 50, 932–937 (2013)

    Article  CAS  Google Scholar 

  29. Vafaee, M., Ghamsari, M.S.: Preparation and characterization of ZnO nanoparticles by a novel sol-gel route. Mater. Lett. 61, 3265–3268 (2007)

    Article  CAS  Google Scholar 

  30. Znaidi, L.: Sol-gel-deposited ZnO Thin Films: a Review. Mater. Sci. Eng. B 174, 18–30 (2010)

    Article  CAS  Google Scholar 

  31. Aneesh, P.M., Vanaja, K.A., Jayaraj, M.K.: Synthesis of ZnO nanoparticles by hydrothermal method. Nanophotonic Mater. 6639, 66390J (2007)

    Google Scholar 

  32. Zhou, Qu., Chen, W., Lingna, Xu., Peng, S.: Hydrothermal synthesis of various hierarchical ZnO nanostructures and their methane sensing properties. Sensors 13, 6171–6182 (2013)

    Article  CAS  Google Scholar 

  33. Ahmad, W., Shams, S., Wei, Y., Yuan, Q., Khan, U., Khan, M.S., Rahman, A.U., Iqbal, M.: Appl. Nanosci. 10, 1191–1204 (2019)

    Article  Google Scholar 

  34. Jiang, I.Y., Wu, X.L., Guo, Y.G.: SnO2-based hierarchical nanomicrostrctures facile synthesis and their application in gas sensors and lithium-ion batteries. J. Phys. Chem. C 113, 14213–14219 (2009)

    Article  CAS  Google Scholar 

  35. Li, Z., Xiong, Y., Xie, Y.: Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorg. Chem. 42, 8105–8109 (2003)

    Article  CAS  Google Scholar 

  36. Yin, Y.X., Jiang, L.Y., Wan, L.J.: Polyethylene glycol-directed SnO2 anaowires for enhanced gas –sensing properties. Nanoscales 3, 1802–1806 (2011)

    Article  CAS  Google Scholar 

  37. Chaturvedi, G., Kaur, A.: Sushil kumar kansal, cds-decorated MIL-53(Fe) microrods with enhanced visible light photocatalytic performance for the degradation of ketorolac tromethamine and mechanism insight. J. Phys. Chem. C 123(27), 16857–16867 (2019)

    Article  CAS  Google Scholar 

  38. Gupta, M., Tomar, R.S., Kaushik, S., Mishra, R.K., Sharma, D.: Effective antimicrobial activity of green ZnO nano particles of catharanthus roseus. Front. Microbiol. (2018). https://doi.org/10.3389/fmicb.2018.02030/full

    Article  Google Scholar 

  39. Kelly, K., Havrilla, C.M., Brady, T.C., Abramo, K.H., Levin, E.D.: Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ. Health Perspect. 106(7), 375–384 (1998)

    Article  CAS  Google Scholar 

  40. Xie, Y., He, Y., Irwin, P.L., Jin, T., Shi, X.: Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2021)

    Article  Google Scholar 

  41. Yang, H., Liu, C., Yang, D., Zhang, H., Xi, Z.: Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol. 29(1), 69–78 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are also thankful for technical and research support from University of Haripur, Pakistan, National University of Science and Technology (NUST), Pakistan, Sukkur IBA University, and University of Chinese Academy of Science (UCAS), China.

Funding

 This research is financially supported by the Higher Education Commission (HEC), Pakistan for Project No. 399/IPFP-II(Batch-1)/SRGP/NAHE/HEC/2020/23).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muzaffar Iqbal or Khalid Hussain Thebo.

Ethics declarations

Conflict of interest

The author (s) reported no potential conflict of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M., Ibrar, A., Ali, A. et al. Facile synthesis of zinc oxide nanostructures and their antibacterial and antioxidant properties. Int Nano Lett 12, 205–213 (2022). https://doi.org/10.1007/s40089-022-00370-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-022-00370-4

Keywords

Navigation