Skip to main content
Log in

Extrusion-Based Technology in Additive Manufacturing: A Comprehensive Review

  • Review Article--mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Extrusion-based additive manufacturing (EB-AM) is a 3D fabrication process in which the material is heated and extracted through a nozzle before being deposited one layer at a time. It uses two types of technologies: filament and pellet extrusion. Filament extrusion machines entail transforming raw plastic pellets into a spool of filament; hence, these machines use limited materials. Pellet extrusion printers are more complex machines and use a screw inside a barrel. Screw feeds, transports, and melts the material before forcing it to be deposited at the required temperatures. Besides the complexities, a pellet extruder offers lower costs, higher speeds, and a wide variety of materials that can be used. This paper presents the development in extrusion-based 3D printing addressing filament and pellet-based printing issues, including filament breakage, nozzle clogging, in-line rheological monitoring, multi-color printing, material retraction, and cost-effectiveness of pellet-based extrusion additive manufacturing. To improve the material domain for 3D printing and utilize the advantages of filament and pellet-based extrusion, a hybrid form of 3D printer can be developed, capable of printing both filaments and pellet forms of material. This review work is intended to help young researchers in the field of EB-AM to understand the advances of this technology and its related complexities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

EB-AM:

Extrusion-based additive manufacturing

AM:

Additive manufacturing

ALM:

Additive layer manufacturing

DMLS:

Direct metal laser sintering

DMLM:

Direct metal laser melting

SLS:

Selective laser sintering

SHS:

Selective heat sintering

EBM:

Electron beam melting

LOM:

Laminated object manufacturing

UAM:

Ultrasonic additive manufacturing

UV:

Ultraviolet

CAD:

Computer-aided design

STL:

Standard tessellation language

FFF:

Fused filament fabrication

FDM:

Fused deposition modeling

SFF:

Solid freeform fabrication

PTFE:

Polytetrafluoroethylene

PC:

Polycarbonate

HIPS:

High-impact polystyrene

DAQ:

Data acquisition device

AE:

Acoustic emission

BMGs:

Bulk metallic glasses

PLA:

Polylactic acid

ABS:

Acrylonitrile butadiene styrene

PLA:

Polylactic acid

PS:

Polystyrene

HIPS:

High impact polystyrene

PETG:

Polyethylene terephthalate glycol

PBT:

Polybutylene terephthalate

PBS:

Polybutylene succinate

PMMA:

Poly-methyl methacrylate

HDPE:

High-density polyethylene

TPU:

Thermoplastic polyurethane

PEI:

Poly ethylenimine

PEEK:

Polyether ether ketone

PPSF:

Poly phenyl sulfone

PEKK:

Poly ether ketone ketone

PP:

Polypropylene

PVC:

Polyvinyl chloride

IFBS:

Interfacial bond strength

MCE:

Microchip capillary electrophoresis

C4D:

Capacitively coupled contactless conductivity detection

BGE:

Background electrolyte

References

  1. Manideep, P.; Subbaratnam, B.; Harsha, M.: Design and development of pallet extruder. AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5141260

    Article  Google Scholar 

  2. Vaezi, M.; Chianrabutra, S.; Mellor, B.; Yang, S.: Multiple material additive manufacturing—part 1: a review: this review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials. Virtual Phys. Prototyp. 8(1), 19–50 (2013). https://doi.org/10.1080/17452759.2013.778175

    Article  Google Scholar 

  3. Patel, A.; Taufik, M.: Stage dependent strengthening of fused filament fabricated components. Mater. Today Proc. 50, 1853–1861 (2021). https://doi.org/10.1016/j.matpr.2021.09.231

    Article  CAS  Google Scholar 

  4. Joshi, S.C.; Sheikh, A.A.: 3D printing in aerospace and its long-term sustainability. Virtual Phys. Prototyp. 10(4), 175–185 (2015). https://doi.org/10.1080/17452759.2015.1111519

    Article  Google Scholar 

  5. Segonds, F.: Design by additive manufacturing: an application in aeronautics and defence. Virtual Phys. Prototyp. 13(4), 237–245 (2018). https://doi.org/10.1080/17452759.2018.1498660

    Article  Google Scholar 

  6. Leal, R., et al.: Additive manufacturing tooling for the automotive industry. Int. J. Adv. Manuf. Technol. 92(5–8), 1671–1676 (2017). https://doi.org/10.1007/s00170-017-0239-8

    Article  Google Scholar 

  7. Francis, M.P.; Kemper, N.; Maghdouri-White, Y.; Thayer, N.: Additive Manufacturing for Biofabricated Medical Device Applications. Elsevier, Amsterdam (2018)

    Book  Google Scholar 

  8. Yap, Y.L.; Yeong, W.Y.: Additive manufacture of fashion and jewellery products: a mini review: this paper provides an insight into the future of 3D printing industries for fashion and jewellery products. Virtual Phys. Prototyp. 9(3), 195–201 (2014). https://doi.org/10.1080/17452759.2014.938993

    Article  Google Scholar 

  9. Sutton, A.T.; Kriewall, C.S.; Leu, M.C.; Newkirk, J.W.: Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys. Prototyp. 12(1), 3–29 (2017). https://doi.org/10.1080/17452759.2016.1250605

    Article  Google Scholar 

  10. Taufik, M.; Jain, P.K.: Role of build orientation in layered manufacturing: a review. Int. J. Manuf. Technol. Manag. 27(1/2/3), 47–73 (2013)

    Article  Google Scholar 

  11. Tamburrino, F.; Barone, S.; Paoli, A.; Razionale, A.V.: Post-processing treatments to enhance additively manufactured polymeric parts: a review. Virtual Phys. Prototyp. 16(2), 218–251 (2021). https://doi.org/10.1080/17452759.2021.1917039

    Article  Google Scholar 

  12. Siddaway, A.P.; Wood, A.M.; Hedges, L.V.: How to do a systematic review: a best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. Annu. Rev. Psychol. 70(1), 747–770 (2018). https://doi.org/10.1146/annurev-psych-010418-102803

    Article  PubMed  Google Scholar 

  13. Turner, B.N.; Strong, R.; Gold, S.A.: A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 20(3), 192–204 (2014). https://doi.org/10.1108/RPJ-01-2013-0012

    Article  Google Scholar 

  14. Mohan, N.; Senthil, P.; Vinodh, S.; Jayanth, N.: A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys. Prototyp. (2017). https://doi.org/10.1080/17452759.2016.1274490

    Article  Google Scholar 

  15. Patel, A.; Taufik, M.: Advances in nanocomposite material for fused filament fabrication. Polym.-Plast. Technol. Mater. (2022). https://doi.org/10.1080/25740881.2022.2072225

    Article  Google Scholar 

  16. Reddy, B.V.; Reddy, N.V.; Ghosh, A.: Fused deposition modelling using direct extrusion. Virtual Phys. Prototyp. 2(1), 51–60 (2007). https://doi.org/10.1080/17452750701336486

    Article  Google Scholar 

  17. Comelli, C.A.; Davies, R.; van der Pol, H.J.; Ghita, O.: PEEK filament characteristics before and after extrusion within fused filament fabrication process. J. Mater. Sci. 57(1), 766–788 (2022). https://doi.org/10.1007/s10853-021-06652-0

    Article  CAS  ADS  Google Scholar 

  18. Singh, M., et al.: Additive manufacturing of mechanically isotropic thin films and membranes via microextrusion 3D printing of polymer solutions. ACS Appl. Mater. Interfaces 11(6), 6652–6661 (2019). https://doi.org/10.1021/acsami.8b22164

    Article  CAS  PubMed  Google Scholar 

  19. Diouf-Lewis, A., et al.: Design and characterization of carbon fiber-reinforced PEEK/PEI blends for fused filament fabrication additive manufacturing. Mater. Today Commun. (2022). https://doi.org/10.1016/j.mtcomm.2022.103445

    Article  Google Scholar 

  20. Rajakaruna, R.A.D.N.V.; Subeshan, B.; Asmatulu, E.: Fabrication of hydrophobic PLA filaments for additive manufacturing. J. Mater. Sci. 57(19), 8987–9001 (2022). https://doi.org/10.1007/s10853-022-07217-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Garmabi, M.M.; Shahi, P.; Tjong, J.; Sain, M.: 3D printing of polyphenylene sulfide for functional lightweight automotive component manufacturing through enhancing interlayer bonding. Addit. Manuf. 56, 102780 (2022). https://doi.org/10.1016/j.addma.2022.102780

    Article  CAS  Google Scholar 

  22. Das, A., et al.: Current understanding and challenges in high temperature additive manufacturing of engineering thermoplastic polymers. Addit. Manuf. 34, 101218 (2020). https://doi.org/10.1016/j.addma.2020.101218

    Article  CAS  Google Scholar 

  23. Xiaoyong, S.; Liangcheng, C.; Honglin, M.; Peng, G.; Zhanwei, B.; Cheng, L.: Experimental analysis of high temperature PEEK materials on 3D printing test. In: Proceedings—9th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2017, pp. 13–16 (2017). https://doi.org/10.1109/ICMTMA.2017.0012

  24. Park, S.J.; Lee, J.E.; Park, J.; Lee, N.K.; Son, Y.; Park, S.H.: High-temperature 3D printing of polyetheretherketone products: Perspective on industrial manufacturing applications of super engineering plastics. Mater. Des. 211, 110163 (2021). https://doi.org/10.1016/j.matdes.2021.110163

    Article  CAS  Google Scholar 

  25. Do Jung, H.; Jang, T.S.; Lee, J.E.; Park, S.J.; Son, Y.; Park, S.H.: Enhanced bioactivity of titanium-coated polyetheretherketone implants created by a high-temperature 3D printing process. Biofabrication (2019). https://doi.org/10.1088/1758-5090/ab376b

    Article  Google Scholar 

  26. Garcia-Leiner, M.; Streifel, B.; Başgül, C.; MacDonald, D.W.; Kurtz, S.M.: Characterization of polyaryletherketone (PAEK) filaments and printed parts produced by extrusion-based additive manufacturing. Polym. Int. 70(8), 1128–1136 (2021). https://doi.org/10.1002/pi.6231

    Article  CAS  Google Scholar 

  27. Wu, W., et al.: 3D printing of thermoplastic PI and interlayer bonding evaluation. Mater. Lett. 229, 206–209 (2018). https://doi.org/10.1016/j.matlet.2018.07.020

    Article  CAS  Google Scholar 

  28. El Magri, A.; Vanaei, S.; Vaudreuil, S.: An overview on the influence of process parameters through the characteristic of 3D-printed PEEK and PEI parts. High Perform. Polym. 33(8), 862–880 (2021). https://doi.org/10.1177/09540083211009961

    Article  CAS  Google Scholar 

  29. Afghah, F., et al.: 3D printing of silver-doped polycaprolactone-poly propylene succinate composite scaffolds for skin tissue engineering. Biomed. Mater. (2020). https://doi.org/10.1088/1748-605X/ab7417

    Article  PubMed  Google Scholar 

  30. Park, S.J., et al.: 3D printing of bio-based polycarbonate and its potential applications in ecofriendly indoor manufacturing. Addit. Manuf. 31, 100974 (2020). https://doi.org/10.1016/j.addma.2019.100974

    Article  CAS  Google Scholar 

  31. Patel, A.; Taufik, M.: Nanocomposite materials for fused filament fabrication. Mater. Today Proc. 47, 5142–5150 (Jan.2021). https://doi.org/10.1016/j.matpr.2021.05.438

    Article  CAS  Google Scholar 

  32. Zaldivar, R.J.; Witkin, D.B.; McLouth, T.; Patel, D.N.; Schmitt, K.; Nokes, J.P.: Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM® 9085 Material. Addit. Manuf. 13, 71–80 (2017). https://doi.org/10.1016/j.addma.2016.11.007

    Article  CAS  Google Scholar 

  33. Chacón, J.M.; Caminero, M.A.; Núñez, P.J.; García-Plaza, E.; García-Moreno, I.; Reverte, J.M.: Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: effect of process parameters on mechanical properties. Compos. Sci. Technol. 181, 107688 (2019). https://doi.org/10.1016/j.compscitech.2019.107688

    Article  CAS  Google Scholar 

  34. Tran, T.Q.; Ng, F.L.; Kai, J.T.Y.; Feih, S.; Nai, M.L.S.: Tensile strength enhancement of fused filament fabrication printed parts: a review of process improvement approaches and respective impact. Addit. Manuf. 54, 102724 (2022). https://doi.org/10.1016/j.addma.2022.102724

    Article  CAS  Google Scholar 

  35. Mackay, M.E.: The importance of rheological behavior in the additive manufacturing technique material extrusion. J. Rheol. (N. Y. N. Y.) 62(6), 1549–1561 (2018). https://doi.org/10.1122/1.5037687

    Article  CAS  ADS  Google Scholar 

  36. van de Werken, N.; Tekinalp, H.; Khanbolouki, P.; Ozcan, S.; Williams, A.; Tehrani, M.: Additively manufactured carbon fiber-reinforced composites: state of the art and perspective. Addit. Manuf. 31, 100962 (2020). https://doi.org/10.1016/j.addma.2019.100962

    Article  CAS  Google Scholar 

  37. Hu, C.; Qin, Q.H.: Advances in fused deposition modeling of discontinuous fiber/polymer composites. Curr. Opin. Solid State Mater. Sci. 24(5), 100867 (2020). https://doi.org/10.1016/j.cossms.2020.100867

    Article  CAS  ADS  Google Scholar 

  38. Koch, C.; Van Hulle, L.; Rudolph, N.: Investigation of mechanical anisotropy of the fused filament fabrication process via customized tool path generation. Addit. Manuf. 16, 138–145 (2017). https://doi.org/10.1016/j.addma.2017.06.003

    Article  Google Scholar 

  39. Alaimo, G.; Marconi, S.; Costato, L.; Auricchio, F.: Influence of meso-structure and chemical composition on FDM 3D-printed parts. Compos. Part B Eng. 113, 371–380 (2017). https://doi.org/10.1016/j.compositesb.2017.01.019

    Article  CAS  Google Scholar 

  40. Rodriguez, J.F.; Thomas, J.P.; Renaud, J.E.: Characterization of the mesostructure of fused-deposition acrylonitrile-butadiene-styrene materials. Rapid Prototyp. J. 6(3), 175–185 (2000). https://doi.org/10.1108/13552540010337056

    Article  Google Scholar 

  41. Ang, K.C.; Leong, K.F.; Chua, C.K.; Chandrasekaran, M.: Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures. Rapid Prototyp. J. 12(2), 100–105 (2006). https://doi.org/10.1108/13552540610652447

    Article  Google Scholar 

  42. Xiao, X.; Chevali, V.S.; Song, P.; He, D.; Wang, H.: Polylactide/hemp hurd biocomposites as sustainable 3D printing feedstock. Compos. Sci. Technol. 184, 107887 (2019). https://doi.org/10.1016/j.compscitech.2019.107887

    Article  CAS  Google Scholar 

  43. Kio, O.J., et al.: Non-destructive evaluation of additively manufactured polymer objects using X-ray interferometry. Addit. Manuf. 24, 364–372 (2018). https://doi.org/10.1016/j.addma.2018.04.014

    Article  CAS  Google Scholar 

  44. Penumakala, P.K.; Santo, J.; Thomas, A.: A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos. Part B Eng. 201, 108336 (2020). https://doi.org/10.1016/j.compositesb.2020.108336

    Article  CAS  Google Scholar 

  45. Wu, H., et al.: Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog. Mater. Sci. (2020). https://doi.org/10.1016/j.pmatsci.2020.100638

    Article  Google Scholar 

  46. Alsoufi, M.S.; Elsayed, A.E.: Warping deformation of desktop 3D printed parts manufactured by open source fused deposition modeling (FDM) system. Int. J. Mech. Mechatron. Eng. 17(4), 7–16 (2017)

    Google Scholar 

  47. Akhoundi, B.; Behravesh, A.H.: Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products. Exp. Mech. 59(6), 883–897 (2019). https://doi.org/10.1007/s11340-018-00467-y

    Article  Google Scholar 

  48. Jabbari, A.; Abrinia, K.: Developing thixo-extrusion process for additive manufacturing of metals in semi-solid state. J. Manuf. Process. 35, 664–671 (2018). https://doi.org/10.1016/j.jmapro.2018.08.031

    Article  Google Scholar 

  49. Sukindar, N.A.; Ariffin, M.K.A.M.; Baharudin, B.T.H.T.; Jaafar, C.N.A.; Ismail, M.I.S.: Effects of nozzle die angle on extruding polymethylmethacrylate in open-source 3D printing. J. Comput. Theor. Nanosci. 15(2), 663–665 (2018). https://doi.org/10.1166/jctn.2018.7141

    Article  CAS  Google Scholar 

  50. Ahn, S.H.; Montero, M.; Odell, D.; Roundy, S.; Wright, P.K.: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8(4), 248–257 (2002). https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  51. Lalegani Dezaki, M.; Mohd Ariffin, M.K.A.; Hatami, S.: An overview of fused deposition modelling (FDM): research, development and process optimisation. Rapid Prototyp. J. 27(3), 562–582 (2021). https://doi.org/10.1108/RPJ-08-2019-0230

    Article  Google Scholar 

  52. Yang, L.; Li, S.; Li, Y.; Yang, M.; Yuan, Q.: Experimental investigations for optimizing the extrusion parameters on FDM PLA printed parts. J. Mater. Eng. Perform. 28(1), 169–182 (2019). https://doi.org/10.1007/s11665-018-3784-x

    Article  CAS  Google Scholar 

  53. Mireles, J.; Espalin, D.; Roberson, D.; Zinniel, B.; Medina, F.; Wicker, R.: Fused deposition modeling of metals. In: 2022 Annual International Solid Freeform Fabrication Symposium an Additive Manufacturing Conference SFF 2012, pp. 836–845 (2012).

  54. Coogan, T.J.; Kazmer, D.O.: In-line rheological monitoring of fused deposition modelling. J. Rheol. (N. Y. N. Y.) 63(1), 141–155 (2019). https://doi.org/10.1122/1.5054648

    Article  CAS  ADS  Google Scholar 

  55. Kazmer, D.O.: Injection mold design engineering. Inject. Mold Des. Eng. (2007). https://doi.org/10.3139/9783446434196

    Article  Google Scholar 

  56. Gogos, C.G.; Tadmor, Z.: Principles of Polymer Processing. Wiley, New York (2013)

    Google Scholar 

  57. Wool, R.P.; Yuan, B.-L.; McGarel, O.J.: Welding of polymer interfaces. Polym. Eng. Sci. 29(19), 1340–1367 (1989). https://doi.org/10.1002/pen.760291906

    Article  CAS  Google Scholar 

  58. Yang, Z.; Jin, L.; Yan, Y.; Mei, Y.: Filament breakage monitoring in fused deposition modeling using acoustic emission technique. Sensors (Switz.) 18(3), 1–16 (2018). https://doi.org/10.3390/s18030749

    Article  CAS  Google Scholar 

  59. Agarwala, M.K.; Jamalabad, V.R.; Langrana, N.A.; Safari, A.; Whalen, P.J.; Danforth, S.C.: Structural quality of parts processed by fused deposition. Rapid Prototyp. J. (1996). https://doi.org/10.1108/13552549610732034

    Article  Google Scholar 

  60. Bellini, A.; Güçeri, S.; Bertoldi, M.: Liquefier dynamics in fused deposition. J. Manuf. Sci. Eng. Trans. ASME 126(2), 237–246 (2004). https://doi.org/10.1115/1.1688377

    Article  Google Scholar 

  61. Crockett, R.S.; Calvert, P.D.: In: Stereodeposition techniques. Process. 1996 Int. Solid Free. Fabr. Symp., pp. 257–264 (1996).

  62. Venkataraman, N., et al.: Feedstock material property—process relationships in fused deposition of ceramics (FDC). Rapid Prototyp. J. 6(4), 244–252 (2000). https://doi.org/10.1108/13552540010373344

    Article  Google Scholar 

  63. Rao, P.K.; Liu, J.; Roberson, D.; Kong, Z.; Williams, C.: Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. J. Manuf. Sci. Eng. Trans. ASME (2015). https://doi.org/10.1115/1.4029823

    Article  Google Scholar 

  64. Gibson, M.A., et al.: 3D printing metals like thermoplastics: fused filament fabrication of metallic glasses. Mater. Today 21(7), 697–702 (2018). https://doi.org/10.1016/j.mattod.2018.07.001

    Article  CAS  Google Scholar 

  65. Ashby, M.F.; Greer, A.L.: Metallic glasses as structural materials. Scr. Mater. 54(3), 321–326 (2006). https://doi.org/10.1016/j.scriptamat.2005.09.051

    Article  CAS  Google Scholar 

  66. Lewandowski, J.J.; Wang, W.H.; Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85(2), 77–87 (2005). https://doi.org/10.1080/09500830500080474

    Article  CAS  ADS  Google Scholar 

  67. Pang, S.J.; Zhang, T.; Asami, K.; Inoue, A.: Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Mater. 50(3), 489–497 (2002). https://doi.org/10.1016/S1359-6454(01)00366-4

    Article  CAS  ADS  Google Scholar 

  68. Waniuk, T.; Schroers, J.; Johnson, W.L.: Timescales of crystallization and viscous flow of the bulk glass-forming Zr–Ti–Ni–Cu–Be alloys. Phys. Rev. B Condens. Matter. Mater. Phys. 67(18), 1–9 (2003). https://doi.org/10.1103/PhysRevB.67.184203

    Article  CAS  Google Scholar 

  69. Zhang, C.; Wang, W.; Li, Y.C.; Yang, Y.G.; Wu, Y.; Liu, L.: 3D printing of Fe-based bulk metallic glasses and composites with large dimensions and enhanced toughness by thermal spraying. J. Mater. Chem. A 6(16), 6800–6805 (2018). https://doi.org/10.1039/c8ta00405f

    Article  CAS  Google Scholar 

  70. Bordeenithikasem, P.; Stolpe, M.; Elsen, A.; Hofmann, D.C.: Glass forming ability, flexural strength, and wear properties of additively manufactured Zr-based bulk metallic glasses produced through laser powder bed fusion. Addit. Manuf. 21(2010), 312–317 (2018). https://doi.org/10.1016/j.addma.2018.03.023

    Article  CAS  Google Scholar 

  71. Ouyang, D.; Li, N.; Xing, W.; Zhang, J.; Liu, L.: 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting. Intermetallics 90, 128–134 (2017). https://doi.org/10.1016/j.intermet.2017.07.010

    Article  CAS  Google Scholar 

  72. Tlegenov, Y.; Hong, G.S.; Lu, W.F.: Nozzle condition monitoring in 3D printing. Robot. Comput. Integr. Manuf. 54, 45–55 (2018). https://doi.org/10.1016/j.rcim.2018.05.010

    Article  Google Scholar 

  73. Loke, G., et al.: Structured multimaterial filaments for 3D printing of optoelectronics. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-11986-0

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rafiee, M.; Farahani, R.D.; Therriault, D.: Multi-material 3D and 4D printing: a survey. Adv. Sci. 7(12), 1–26 (2020). https://doi.org/10.1002/advs.201902307

    Article  CAS  Google Scholar 

  75. Han, S.; Xiao, Y.; Qi, T.; Li, Z.; Zeng, Q.: Design and analysis of fused deposition modeling 3D printer nozzle for color mixing. Adv. Mater. Sci. Eng. (2017). https://doi.org/10.1155/2017/2095137

    Article  Google Scholar 

  76. Abilgaziyev, A.; Kulzhan, T.; Raissov, N.; Ali, M.H.; Match, W.L.K.O.; Mir-Nasiri, N.: Design and development of multi-nozzle extrusion system for 3D printer. In: 2015 4th International Conference on Informatics, Electronics. Vision, ICIEV 2015 (2015). https://doi.org/10.1109/ICIEV.2015.7333982.

  77. Ali, M.H.; Mir-Nasiri, N.; Ko, W.L.: Multi-nozzle extrusion system for 3D printer and its control mechanism. Int. J. Adv. Manuf. Technol. 86(1–4), 999–1010 (2016). https://doi.org/10.1007/s00170-015-8205-9

    Article  Google Scholar 

  78. Lopes, L.R.; Silva, A.F.; Carneiro, O.S.: Multi-material 3D printing: the relevance of materials affinity on the boundary interface performance. Addit. Manuf. 23, 45–52 (2018). https://doi.org/10.1016/j.addma.2018.06.027

    Article  CAS  Google Scholar 

  79. Waly, C.; Petersmann, S.; Arbeiter, F.: Multimaterial extrusion-based additive manufacturing of compliant crack arrester: influence of interlayer length, thickness, and applied strain rate. Adv. Eng. Mater. (2022). https://doi.org/10.1002/adem.202101703

    Article  Google Scholar 

  80. Ahmed, S.W., et al.: On the effects of process parameters and optimization of interlaminate bond strength in 3D printed ABS/CF-PLA composite. Polymers (Basel). (2020). https://doi.org/10.3390/POLYM12092155

    Article  PubMed  PubMed Central  Google Scholar 

  81. Quero, R.F.; de Costa, B.M.C.; da Silva, J.A.F.; de Jesus, D.P.: Using multi-material fused deposition modeling (FDM) for one-step 3D printing of microfluidic capillary electrophoresis with integrated electrodes for capacitively coupled contactless conductivity detection. Sensors Actuators B Chem. (2022). https://doi.org/10.1016/j.snb.2022.131959

    Article  Google Scholar 

  82. Wang, W., et al.: Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials (Basel). (2016). https://doi.org/10.3390/ma9120992

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  83. Geoffroy, L.; Samyn, F.; Jimenez, M.; Bourbigot, S.: Additive manufacturing of fire-retardant ethylene-vinyl acetate. Polym. Adv. Technol. 30(7), 1878–1890 (2019). https://doi.org/10.1002/pat.4620

    Article  CAS  Google Scholar 

  84. Goyanes, A.; Allahham, N.; Trenfield, S.J.; Stoyanov, E.; Gaisford, S.; Basit, A.W.: Direct powder extrusion 3D printing: fabrication of drug products using a novel single-step process. Int. J. Pharm. (2019). https://doi.org/10.1016/j.ijpharm.2019.118471

    Article  PubMed  Google Scholar 

  85. Lengauer, W.; et al.: Preparation and properties of extrusion-based 3D-printed hardmetal and cermet parts. In: Euro PM2018 Congress & Exhibition (2020).

  86. Woern, A.L.; Byard, D.J.; Oakley, R.B.; Fiedler, M.J.; Snabes, S.L.; Pearce, J.M.: Fused particle fabrication 3-D printing: recycled materials’ optimization and mechanical properties. Materials (Basel) (2018). https://doi.org/10.3390/ma11081413

    Article  PubMed  Google Scholar 

  87. Moreno Nieto, D.; Casal López, V.; Molina, S.I.: Large-format polymeric pellet-based additive manufacturing for the naval industry. Addit. Manuf. 23, 79–85 (2018). https://doi.org/10.1016/j.addma.2018.07.012

    Article  CAS  Google Scholar 

  88. Kumar, N.; Jain, P.K.; Tandon, P.; Pandey, P.M.: Extrusion-based additive manufacturing process for producing flexible parts. J. Braz. Soc. Mech. Sci. Eng. 40(3), 1–12 (2018). https://doi.org/10.1007/s40430-018-1068-x

    Article  Google Scholar 

  89. Bellini, A.: Fused deposition modelling of ceramins: A comprehensive experimental, analytical and computational study of material behaviour, fabrication process and equipment design. Dissertation, Drexel University (2002)

  90. Bellini, A.; Shor, L.; Guceri, S.I.: New developments in fused deposition modeling of ceramics. Rapid Prototyp. J. (2005). https://doi.org/10.1108/13552540510612901

    Article  Google Scholar 

  91. Wang, F., et al.: Precision extruding deposition and characterization of cellular poly-ε-caprolactone tissue scaffolds. Rapid Prototyp. J. 10(1), 42–49 (2004). https://doi.org/10.1108/13552540410512525

    Article  Google Scholar 

  92. de Silveira, Z.C.; de Freitas, M.S.; Neto, P.I.; Noritomi, P.Y.; da Silva, J.V.L.: Design development and functional validation of an interchangeable head based on mini screw extrusion applied in an experimental desktop 3-D printer. Int. J. Rapid Manuf. 4(1), 49 (2014). https://doi.org/10.1504/ijrapidm.2014.062037

    Article  Google Scholar 

  93. Tseng, J.W., et al.: Screw extrusion-based additive manufacturing of PEEK. Mater. Des. 140, 209–221 (2018). https://doi.org/10.1016/j.matdes.2017.11.032

    Article  CAS  Google Scholar 

  94. Zhou, Z.; Salaoru, I.; Morris, P.; Gibbons, G.J.: Additive manufacturing of heat-sensitive polymer melt using a pellet-fed material extrusion. Addit. Manuf. 24, 552–559 (2018). https://doi.org/10.1016/j.addma.2018.10.040

    Article  CAS  Google Scholar 

  95. Leng, J.; Wu, J.; Chen, N.; Xu, X.; Zhang, J.: The development of a conical screw-based extrusion deposition system and its application in fused deposition modeling with thermoplastic polyurethane. Rapid Prototyp. J. 26(2), 409–417 (2020). https://doi.org/10.1108/RPJ-05-2019-0139

    Article  Google Scholar 

  96. Annoni, M.; Giberti, H.; Strano, M.: Feasibility study of an extrusion-based direct metal additive manufacturing technique. Procedia Manuf. 5, 916–927 (2016). https://doi.org/10.1016/j.promfg.2016.08.079

    Article  Google Scholar 

  97. Canessa, E.; Baruzzo, M.; Fonda, C.: Study of Moineau-based pumps for the volumetric extrusion of pellets. Addit. Manuf. 17, 143–150 (2017). https://doi.org/10.1016/j.addma.2017.08.015

    Article  Google Scholar 

  98. Khondoker, M.A.H.; Sameoto, D.: Direct coupling of fixed screw extruders using flexible heated hoses for FDM printing of extremely soft thermoplastic elastomers. Prog. Addit. Manuf. 4(3), 197–209 (2019). https://doi.org/10.1007/s40964-019-00088-4

    Article  Google Scholar 

  99. Whyman, S.; Arif, K.M.; Potgieter, J.: Design and development of an extrusion system for 3D printing biopolymer pellets. Int. J. Adv. Manuf. Technol. 96(9–12), 3417–3428 (2018). https://doi.org/10.1007/s00170-018-1843-y

    Article  Google Scholar 

  100. Mudalamane, R.; Bigio, D.I.: Process variations and the transient behavior of extruders. AIChE J. 49(12), 3150–3160 (2003). https://doi.org/10.1002/aic.690491215

    Article  CAS  ADS  Google Scholar 

  101. Drotman, D.; Arbor, A.; Bitmead, R.: Control-oriented energy-based modeling of a screw extruder used for 3D printing. In: ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers Digital Collection, pp. 1–7 (2016).

  102. Albu, S.C.: Development on the production of a new type of extruder used in additive manufacturing, FDM technology. Procedia Manuf. 22, 141–146 (2018). https://doi.org/10.1016/j.promfg.2018.03.022

    Article  Google Scholar 

  103. Wankhade, M.H.; Bahaley, S.G.: Design and development of plastic filament extruder for 3D printing. IRA-Int. J. Technol. Eng. 10(3), 23 (2018). https://doi.org/10.21013/jte.v10.n3.p1

    Article  Google Scholar 

  104. Krishnanand, V.; Singh, V.; Mittal, V.; Branwal, A.K.; Taufik, M.: Extruder Design in Pellets Operated 3D Printers: A Review, p. 661–675. Springer, Cham (2022)

    Google Scholar 

  105. Curmi, A.; Rochman, A.: From theory to practice: development and calibration of micro pellet extruder for additive manufacturing. Key Eng. Mater. 926, 34–45 (2022). https://doi.org/10.4028/p-b22a9a

    Article  Google Scholar 

  106. Krishnanand; Taufik, M.: Design and development of pellets/granules extrusion system for additive manufacturing. (2021). https://doi.org/10.1115/IMECE2021-71083.

  107. Albu, S.C.; NuȚiu, E.: Study on designing the extruder for 3D printers with pellets. Acta Marisiensis. Ser. Technol. 16(1), 19–22 (2019). https://doi.org/10.2478/amset-2019-0004

    Article  Google Scholar 

  108. Krishnanand, A.; Soni, S.; Nayak, A.; Taufik, M.: Development of graphics user interface (GUI) for process planning in extrusion based additive manufacturing. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.02.306

    Article  Google Scholar 

  109. Kumar, S.; Singh, R.; Singh, T.P.; Batish, A.: On twin screw extrusion parametric optimisation using hybrid approach of ANOVA and TOPSIS for 3D printing applications. Adv. Mater. Process. Technol. (2022). https://doi.org/10.1080/2374068X.2022.2087844

    Article  Google Scholar 

  110. Hertle, S.; Drexler, M.; Drummer, D.: Additive manufacturing of poly(propylene) by means of melt extrusion. Macromol. Mater. Eng. 301(12), 1482–1493 (2016). https://doi.org/10.1002/mame.201600259

    Article  CAS  Google Scholar 

  111. Magnoni, P.; Rebaioli, L.; Fassi, I.; Pedrocchi, N.; Tosatti, L.M.: Robotic AM system for plastic materials: tuning and on-line adjustment of process parameters. Procedia Manuf. 11, 346–354 (2017). https://doi.org/10.1016/j.promfg.2017.07.117

    Article  Google Scholar 

  112. Brooks, B.J.; Arif, K.M.; Dirven, S.; Potgieter, J.: Robot-assisted 3D printing of biopolymer thin shells. Int. J. Adv. Manuf. Technol. 89(1–4), 957–968 (2017). https://doi.org/10.1007/s00170-016-9134-y

    Article  Google Scholar 

  113. Liu, X.; Chi, B.; Jiao, Z.; Tan, J.; Liu, F.; Yang, W.: A large-scale double-stage-screw 3D printer for fused deposition of plastic pellets. J. Appl. Polym. Sci. 134(31), 1–9 (2017). https://doi.org/10.1002/app.45147

    Article  CAS  Google Scholar 

  114. Duty, C.E., et al.: Structure and mechanical behavior of big area additive manufacturing (BAAM) materials. Rapid Prototyp. J. 23(1), 181–189 (2017). https://doi.org/10.1108/RPJ-12-2015-0183

    Article  Google Scholar 

  115. Ramanath, H.S.; Chua, C.K.; Leong, K.F.; Shah, K.D.: Melt flow behaviour of poly-ε-caprolactone in fused deposition modelling. J. Mater. Sci. Mater. Med. 19(7), 2541–2550 (Jul.2008). https://doi.org/10.1007/s10856-007-3203-6

    Article  CAS  PubMed  Google Scholar 

  116. Bin Sukindar, N.A.; Bin Mohd Ariffin, M.K.A.; Tuah Bin Baharudin, B.T.H.; Binti Jaafar, C.N.A.; Bin Ismail, M.I.S.: Analysis on temperature setting for extruding polylactic acid using open-source 3D printer. ARPN J. Eng. Appl. Sci. 12(4), 1348–1353 (2017)

    CAS  Google Scholar 

  117. Khondoker, M.A.H.; Sameoto, D.: Design and characterization of a bi-material co-extruder for fused deposition modeling (2016) https://doi.org/10.1115/imece2016-65330.

  118. Kumar, N.; Jain, P.K.; Tandon, P.; Mohan Pandey, P.: Experimental investigations on suitability of polypropylene (PP) and ethylene vinyl acetate (EVA) in additive manufacturing. Mater. Today Proc. 5(2), 4118–4127 (2018). https://doi.org/10.1016/j.matpr.2017.11.672

    Article  CAS  Google Scholar 

  119. Kumar, N.; Jain, P.K.; Tandon, P.; Pandey, P.M.: The effect of process parameters on tensile behavior of 3D printed flexible parts of ethylene vinyl acetate (EVA). J. Manuf. Process. 35, 317–326 (2017). https://doi.org/10.1016/j.jmapro.2018.08.013

    Article  Google Scholar 

  120. Kumar, N.; Jain, P.K.; Tandon, P.; Pandey, P.M.: Investigation on the effects of process parameters in CNC assisted pellet based fused layer modeling process. J. Manuf. Process. 35, 428–436 (2017). https://doi.org/10.1016/j.jmapro.2018.08.029

    Article  Google Scholar 

  121. Kumar, N.; Jain, P.K.; Tandon, P.; Pandey, P.M.: Investigations on the melt flow behaviour of aluminium filled ABS polymer composite for the extrusion-based additive manufacturing process. Int. J. Mater. Prod. Technol. 59(3), 194–211 (2019). https://doi.org/10.1504/IJMPT.2019.102931

    Article  CAS  Google Scholar 

  122. Gawali, S.K.; Pandey, G.C.; Bajpai, A.; Jain, P.K.: Large-part manufacturing using CNC-assisted material extrusion-based additive manufacturing: issues and challenges. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01097-4

    Article  Google Scholar 

  123. Alam, M.A.; Krishnanand; Patel, A.; Purohit, R.; Taufik, M.: Thermal analysis for improvement of mechanical properties in fused filament fabricated parts. Int. J. Interact. Des. Manuf. 1, 2 (2022). https://doi.org/10.1007/S12008-022-00981-3

    Article  Google Scholar 

  124. Rishi, O.: Feed rate effects in freeform filament extrusion feed rate effects in freeform filament extrusion (2013).

  125. Drotman, D.T.J.: Design of a screw extruder for additive manufacturing, p. 57 (2015).

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB)–DST, New Delhi, India, under its Start-up Research Grant (SRG) scheme [Grant Number: SRG/2019/000943].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Taufik.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A., Taufik, M. Extrusion-Based Technology in Additive Manufacturing: A Comprehensive Review. Arab J Sci Eng 49, 1309–1342 (2024). https://doi.org/10.1007/s13369-022-07539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07539-1

Keywords

Navigation